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Chapter 1IntrodutionSine the Internet emerged, more than twenty years ago, the set of requirementshave hanged. The initial design priniples and arhitetural model for the Inter-net have been shifting from an end-to-end towards an end-to-middle model [39℄. Inaddition, the explosion of mobile tehnologies have revolutionized the networking.Due to these new demands and tehnology development, various proposals try tofae some of these new hallenges for the Internet. The typial solutions are relatedwith the network-level protools, e.g., Mobile IP. This protool implies an additionalinfrastruture reating a home network whih sends the pakets between it and themobile host sine eah mobile host has an invariant home address. The drawbaks ofthis approah are lak of seurity, performane and internetworking [58℄. One suhalternative is the Host Identity Protool (HIP). Further details about a omparisonbetween these two approahes an be found in [12℄.HIP addresses a number of new requirements related to end-host multihoming, mo-bility and seurity by introduing a new ryptographi namespae, splitting identi�erand loator roles of Internet Protool (IP) addresses. In this new design, the networklayer identi�ers ontinue being bound to the IP addresses and are in harge of therouting. By ontrast, the transport layer is bound to the endpoint's identity whihthe underlaying HIP layer de�nes. This approah has the bene�t that although net-work loators hange, transport-layer onnetions persist.HIPL positions the HIP arhiteture towards IPv6-ompatible appliations, but thereare still many IPv4-only appliations. Although the IPv6 deployment is a fat, itwill take some time until we an refer to an IPv6-only environment. Therefore, therewill be a transition period where both IP versions must oexist. On the other hand,its arhiteture already supports IPv4 and IPv6 networks [1℄.In addition, HIP prefers Publi Key Infrastruture (PKI) [61℄ whih is not glob-ally deployed. Conretely, HIP identities are ryptographially based, where a Host1



CHAPTER 1. INTRODUCTION 2Identity onsists on a publi key. This Host Identity ould be stored in DNS, a PKIor be anonymous.This thesis takles these two problems, support for IPv4-only appliations and net-works without PKI support, to boost HIP deployment.1.1 Problem statementThe following is the problem statement this thesis deals with:1. Failitate the deployment of HIP to legay appliations and networks. We ansubdivide the problem into two topis. The �rst point is to add support forIPv4-only appliations. As a onsequene, we add interoperability betweenIPv4 and IPv6 at the appliation layer using HIP. Our main ontribution isthe design and implementation of LSIs, an IPv4-sized identi�er whih allowsto run IPv4 appliations using HIP.2. Support networks without PKI when the lient is using HIP. The most ommonsenario is to establish ommuniation with a peer not HIP-aware. In this ase,HIPL fallbaks to a non-HIP ommuniation.We disuss more deeply the problems of deployment in hapter 3.1.2 SopeThe sope of this thesis is to design solutions for HIP for Linux (HIPL) implementa-tion to support IPv4-only legay appliations and to allow HIP-based onnetivitywithout PKI. We implemented the IPv4 support based on Loal Sope Identi�ers(LSIs). Meanwhile HIP support for networks without PKI is based on the oppor-tunisti mode and a shim layer between transport and network layers. The designand implementation use C [27℄ as programming language.We also provide a performane analysis of the two new implementation features.The main objetive of the implementation is to prove that the design an work inpratie. However, the performane and reliability are a seondary evaluation rite-rion.



CHAPTER 1. INTRODUCTION 31.3 Struture of the thesisThe rest of this thesis is organized as follows:Chapter 2 details and examines the fundamental protools we need for introdu-ing the researh area of this thesis. In addition, it de�nes the major linux librariesneeded for designing and implementing our solution.Chapter 3 disusses the problem statement presenting the deployment of the prob-lem and deepening in the subproblems.Chapter 4 presents our design and hapter 5 introdues implementation details ofLoal Sope Identi�ers and system-based opportunisti mode.Chapter 6 explains the implementation analysis. Furthermore, it presents some de-sign alternatives for the urrent design. The analysis ontains measured results andharts, and then disussion of the results. Moreover, we go through FTP referralproblems and Maximum Transfer Unit (MTU) value modi�ations related to LSIand the LSI address spae. Finally, we study the LSI ompatibility with the urrentHIPL projet and other extensions under development.Chapter 7 summarizes the main onlusions of this projet.To �nalize, hapter 8 desribes diretions for future work, giving thoughts and ideasfor future improvements and extensions.



Chapter 2BakgroundThe aim of this hapter is to desribe the bakground topis. We assume thatthe reader understands the basi onepts of the TCP/IP suite and has skills in Cprogramming. The hapter is organized as follows: setion 2.1 ompares the maindi�erenes between IPv4 and IPv6. Seondly, setion 2.2 gives a general overviewof HIP. Following that, setion 2.3 desribes DNS and setion 2.4 desribes IPSe.Apart from the general overview given for DNS and IPSe, we also inlude an ap-proah about how they are integrated into HIP. Then, we talk about issues related toUNIX programming: raw sokets, netlink, LD_PRELOAD, TUN/TAP and dummyinterfae. Finally, in setion 2.9 we disuss also an extensible session-layer arhite-ture using interposition libraries.2.1 IPv4 vs IPv6The main motivation for updating IP [49℄ was the lak of address spae with IPv4.Network Address Translation (NAT) has been a short-term solution that prolongedthe lifetime of IPv4. However, this and other hallenges suh as di�ulties in de-ploying new protools made a new protool version neessary: IPv6. IPv4 and IPv6have a lot of oneptual similarities, but IPv6 introdues new features in routingand network autoon�guration that IPv4 does not have. Unfortunately, these IPversions are not diretly ompatible, hene programs and systems designed to onestandard an not ommuniate with those designed with the other [34℄. The di�er-enes between the protool versions an be grouped into seven ategories [6℄:1. Address size. IPv6 addresses are 128 bits long, while IPv4 address size is 32bits. In other words, an IPv6 address is four times longer than an IPv4 address.This inreases the address hierarhy, reating additional levels for addressing.2. Optional header. IPv4 has a variable length header, meanwhile IPv6 simpli�esit. IPv6 base header has a �xed size that an be followed by optional headersand, moreover, it does not inlude a heksum.4



CHAPTER 2. BACKGROUND 53. Improved options. IPv6 inludes some options not available for IPv4. Further-more, the wire format for the options speeds up the paket-proessing timein routers. This is beause they are handled with extensions that not all therouters have to proess.4. Seurity. IPv6 introdues seurity mehanism at the network level providingauthentiation, on�dentiality and integrity using the IPSe protool. IPv6spei�ations mandate IPSe inlusion while this is optional with IPv4.5. Provision for protool extension. IPv6 design is more extendable in order tosupport new tehnology hanges.6. Support for address autoon�guration and renumbering. IPv6 allows to assignloal addresses automatially, as well as renumbering networks at a site moredynamially.7. Support for resoure alloation. IPv6 supports the same Quality of Servie(QoS) features as IPv4, inluding di�erentiated servie (Di�Serv) indiation.However, IPv6 inludes a tra� �ow �eld whih an provide a solid base tobuild QoS protools.2.2 Host Identity ProtoolIn this setion, we give a HIP overview based on the related Request For Comments(RFCs), Internet Drafts and a number of artiles.2.2.1 New stak arhitetureProesses use sokets to send and reeive network data in the urrent network ar-hiteture. The tra� of di�erent proesses is demultiplexed by IP address, portand protool. On the ontrary, HIP binds transport layer sokets to Host Identi�ers(HIs), allowing persistent bindings throughout IP addresses hanges. As a result,HIP arhiteture splits the identi�er and loator roles of the IP address [46℄. Whilethe HI is the end-point identi�er, the IP represents the topologial loation of thehost in the network. This requires a translation mehanism between the HI and theIP, and vie versa. For ahieving this translation mehanism, HIP loates a newlayer alled Host Identity Layer in the TCP/IP stak, between the transport andnetworking layer. The omparison between the urrent Internet bindings and theones introdued by HIP arhiteture is shown in Figure 2.1.2.2.2 New name spae layer and identi�ersHIP [52℄ introdues the HIP layer to the TCP/IP networking stak, as Figure 2.2shows. The new layer is based on HIs and it is loated between transport and net-



CHAPTER 2. BACKGROUND 6
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CHAPTER 2. BACKGROUND 7A HIT is a type of Overlay Routable Cryptographi Hash Identi�er (ORCHID) [45℄,i.e. appliations and APIs use HIT as an endpoint identi�er. An ORCHID resemblesan IPv6 address whih is not routable from an IPv6 layer point-of-view and it has apre�x in order to di�erentiate it from a real IPv6 address. An algorithm generatesthe ORCHID taking as input the following parameters: a unique or statially uniquebitstring, a ontext id whih is randomly generated and de�nes the usage ontext, ahash funtion and a 28-bit pre�x.ORCHIDs are statially unique. However, there exist two situations where ORCHIDollisions ould be possible. The �rst senario is when two di�erent input bitstringswithin the same ontext map to the same ORCHID. In this ase, the state-set-upmehanism resolves the on�it. The seond situation happens when two input bit-strings in di�erent ontexts map to the same ORCHID. The solution is to indiatea on�it when this ORCHID is already in use.The most important properties of HIT are:
• Same length as IPv6 addresses. Thus, HIP an use HITs in existing IPv6appliations.
• Self-ertifying. HITs are self-ertifying beause of the seond-preimage resis-tane property of hash funtions. In other words, given a Host Identity K1,�nding a di�erent Host Identity K2, where hash(K1) = hash(K2), is omputa-tionally hard. In the future, as the omputational power inreases, this featureould disappear. In this ase, the length of the primary key should be in-reased in order to preserve seurity, nevertheless the HIT size is �xed. Thebest approah is to use the Host Identity when identi�ation is needed [43℄.
• Probability of ollision very low. For any given HIT the probability of ollisionis approximately (2−126) ∗ N where N is the total number of HITs [8℄. Thebirthday paradox states that given a large enough population and a hash spae,there may be ollisions. A 128-bit hash will have 0.001% ollision hane in a

9x1016 population [53℄.LSIThe Loal Sope Identi�er (LSI) is a 32-bit representation for a HI. Thus, HIP anbuild an LSI taking the last bytes of the HIT. LSIs have the same length as IPv4addresses in order to support IPv4-only legay appliations. LSIs are only valid inthe ontext of the loal host, similarly to soket desriptors. Another feature is thatLSIs are shorter than HITs, inreasing the probability of ollision.



CHAPTER 2. BACKGROUND 82.2.3 Interoperating with IPv4 and IPv6Nowadays the deployment of IPv6 networks is slowly replaing IPv4 in the Internet.Nevertheless, during this transition period between the two versions, network nodesmust be able to ommuniate with both protools. The transition mehanism [2℄may inlude:1. Domain Name Server (DNS) upgrade, introduing AAAA Resoure Reords.2. Dual protool staks. Parallel support for both IPv4 and IPv6.3. Tunneling. IPv6 pakets are tunneled over IPv4 regions.4. A standard IPv6 programming interfae to upgrade existing IPv4 appliationsand ease the development of IPv6 ones.HIP deouples the transport and internetworking layer, thus it solves interoperabilityproblems at the appliation and network node [22℄. As shown in Figure 2.1, trans-port layer sokets are not bound to IP addresses, then a legay IPv4 appliation antalk with a legay IPv6 appliation. HIP supports IPv4 and IPv6 sokets beause itis able to resolve an IP to an end-point identi�er: an LSI for IPv4 appliations or aHIT for IPv6 appliations.
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Figure 2.3: Example of ommuniation aross IP versions with HIPFigure 2.3 illustrates a typial senario where an IPv4 appliation ommuniatesover an IPv6 network with an IPv6 appliation. The onnetivity between bothhosts an be either IPv4-based or IPv6-based, independently of the appliation.



CHAPTER 2. BACKGROUND 92.2.4 HIP Base ExhangeThe �rst phase in a HIP ommuniation is the Base Exhange [52℄, as shown inFigure 2.4. The Base Exhange is a four-way handshake that performs end-to-endauthentiation. The �rst paket triggers the ommuniation and the other threeonsist of a Di�e-Hellman key exhange whih reates a piee of key material thatIPSe uses for enrypting and proteting the data.
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R2:<authentication>Figure 2.4: HIP Base ExhangeThe host initiating the ommuniation is the initiator and the peer host is the re-sponder. Typially, the initiator is the lient host and the responder a server. Theinitiator begins the handshake proedure by sending an I1 paket. When the peerreeives the I1 paket, it generates an R1 paket. The R1 paket ontains a puz-zle with a on�gurable di�ulty level, the initial Di�e-Hellman parameters and asignature. The puzzle is a ryptographi hallenge that the initiator must solve inorder to ontinue the Base Exhange. The initiator tries to solve the puzzle andanswers to the responder with an I2 paket. The I2 paket must ontain the solutionof the puzzle and Di�e-Hellman parameters. If the solution for the puzzle is wrong,the peer disards the I2 paket and aborts the ommuniation. Otherwise, the peer�nalizes the Base Exhange by sending a signed R2 paket.A more detailed analysis of the HIP Base Exhange protool an be found in [57℄.2.2.5 HIP Opportunisti ModeThe opportunisti mode is based on the Leap-of-Faith (LoF) mode of operation.LoF means that the initiator initiates the �rst onnetion without knowledge ofpeer identity. Subsequent ommuniations an use a ahed identity of the peer.It is based on the assumption that during the �rst onnetion, there is no attakagainst the onnetion [37℄. In onsequene, it is prone to MITM attaks beausethe initiator does not know the responder's identity. A third host plaed betweenthe initiator and responder an interept the ommuniation and impersonate the



CHAPTER 2. BACKGROUND 10responder. Therefore, it is reommended to use it only in trusted environments [10℄.Figure 2.5 illustrates an MITM attak with opportunisti mode. Alie is the initia-tor and Bob the responder. When Alie sends an I1 paket, Trudy interepts thepaket and responds with her own R1 to Alie. Consequently, Alie will think she isommuniating with Bob, but she is ommuniating Trudy.
Trudy BobAlice

I1

R1

I1Figure 2.5: Man in the Middle attak during Base Exhange in Opportunisti ModeTCP Extension for Opportunisti ModeWhen the initiator starts the Base Exhange with opportunisti mode, it waits untilit reeives an R1 paket from the peer or times out. If the peer is not HIP-enabled,the initiator will be waiting until a timeout ours. The extension disussed in thissetion provides a way to derease lateny when the peer is not HIP-enabled basedon [5℄, improving user experiene for HIP.We explain the senario independently of the peer apability to support HIP. Firstly,a lient appliation starts ommuniations with a peer. The HIP layer bloks theall and requests the HIT mathing the IP. We assume that the initiator does notknow the HIT of the peer. Thus, the Base Exhange starts in opportunisti mode,sending an I1 paket together with a TCP SYN message with a speial TCP option.If the responder is HIP-enabled, it proesses the I1 paket and generates and sendsan R1 paket. The initiator reeives the TCP SYN ACK option and disards it. Atthis moment, the responder replies with R1 and the initiator appliation establishesthe ommuniation with the peer HIT.On the other hand, if the responder is not HIP-aware, it does not understand theI1 paket and the TCP speial option. It answers the initiator with a TCP SYNACK message. As the speial option is not present in the response, the initiatordetets that the peer does not support HIP. The initiator unbloks the appliationand establishes the onnetion without HIP.This solution only works for TCP tra�, beause it is based on the handshake ofthe TCP protool [50℄. However, it is better than some other approahes, as e.g.inluding an option in the IP header, beause most urrently deployed middleboxes



CHAPTER 2. BACKGROUND 11drop the paket [5℄.2.3 Domain Name SystemThis setion introdues the basis of the Domain Name System (DNS) protool [29℄.DNS ats as an "Internet phone book". It is a distributed database whih maps ahuman name: a hostname, e.g. infrahip, or a Fully Quali�ed Domain Name (FQDN),e.g. infrahip.hiit.�, to an IP address. The DNS name spae follows a hierarhialorganization where eah node has a label. The domain name of a node is the list oflabels separated by a period, in this ase a dot, starting at that node and ending atthe root node [54℄.2.3.1 Resoure ReordsA Resoure Reord (RR) [55℄ is a DNS name reord. There are di�erent types ofRRs:
• A: Maps a hostname into an IPv4 address.
• AAAA: Also alled a quad A reord. Maps a hostname into an IPv6 address.
• PTR: Called pointer reords. Maps IP addresses into hostnames. Providesreverse resolution to A and AAAA RRs, translating an address, either IPv4 orIPv6. PTR reords involve appending in-addr.arpa for IPv4 addresses andip6.int for IPv6 addresses.2.3.2 Resolvers and Name ServersThe resolver is usually implemented with the aim of providing ommuniation be-tween the appliation and the DNS server by sending DNS queries and managingthe responses. UNIX hosts use mainly two library funtions to aess the resolver.Funtion gethostbyname translates hostnames to IP addresses and gethostbyaddrprovides the reverse funtionality. Their main problem is that they only supportIPv4.Funtions getaddrinfo and getnameinfo also support IPv6 beause they returnsokaddr strutures. This struture is shown in Figure 2.6 and as it is visible, itde�nes a generi soket address struture.



CHAPTER 2. BACKGROUND 12strut sokaddr{ uint8_t sa_len;int sa_family;har sa_data[14℄;}; Figure 2.6: The sokaddr strutureThe getaddrinfo funtion resolves a hostname to an IP address. The funtion andthe assoiated data struture are shown in Figure 2.7. Funtion getnameinfo is theomplement of getaddrinfo. It inputs an IP address and returns the hostname andthe servie.strut addrinfo{ int ai_flags; /* Input flags */int ai_family; /* E.g. AF_INET6, AF_INET */int ai_soktype; /* Soket type */int ai_protool; /* 0 or IPPROTO_xxx forIPv4 or IPv6 */size_t ai_addrlen; /* Length of ai_addr */har *ai_anonname; /* Canonial name */strut sokaddr *ai_addr; /* Pointer to soket addressstruture */strut addrinfo *ai_next; /* Points next addrinfo */};int getaddrinfo(onst har *hostname, onst har *servie,onst strut addrinfo *hints, onst strut addrinfo **result)Figure 2.7: The addrinfo struture and the getaddrinfo funtion2.3.3 DNS Extension for HIPDNS extensions for HIP are de�ned in [43℄. They desribe a new RR for HIP HIswhere the resolver library returns a HIT for IPv6 or HIP-aware [38℄ appliations, oran LSI for IPv4-only appliations.The information that is stored in DNS onsists of:
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• IP addresses, via A or AAAA
• HI, HIT and possibly a set of rendezvous servers (RVS) [31℄ via HIP.The mehanism implemented in HIPL is shown in Figure 2.8. When the appliationtriggers a DNS query, the resolver library returns the peer host HIT and IP. Firstly,this information is stored in HIP data strutures and seondly, the resolver returnsthe HIT to the appliation. The appliation onnets with the peer host using theHIT. Before the data tra� starts, HIP initiates the Base Exhange with the peerin order to establish the key exhange to protet the data.The main advantage of storing HIs to DNS is to prevent MITM attaks. In order toprevent spoo�ng attaks, it is reommended to use DNSSEC [10℄. On the other hand,the main disadvantage is that ontemporary DNS an not resolve HIs to hostnamesor IP addresses.
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LOCAL HOSTFigure 2.8: Resolver interationWhen user wants to use HIP with a legay appliation, one problem for the previoussolution ours when the appliation wants to use an IP address instead of a HIT.One solution for this is to introdue a domain name pre�x spei� to HIP. E.g a"hip-www.example.om" DNS query ould return a HIT or an LSI [62℄.2.4 IP SeurityIP Seurity (IPSe) [26℄ operates at the network layer providing seurity supportfor transport-level protools. It seures ommuniations by authentiating and/orenrypting eah paket. As it is below the transport layer, it is transparent toappliations.



CHAPTER 2. BACKGROUND 142.4.1 ArhitetureSeurity PoliyA Seurity Poliy (SP) tells an IPSe implementation how to manage the di�erentdatagrams reeived or sent to the network devie. These rules deide when the hostapplies or bypasses IPSe protetion, or disards a paket. They are stored in theSeurity Poliy Database (SPD).Seurity AssoiationA Seurity Assoiation (SA) de�nes a set of seurity-related information, inlud-ing the symmetri key and algorithm, desribing an IPSe protetion between twodevies. The management of SAs involves a three-tuple:
• Seurity Parameter Index (SPI). Pseudo-randomly derived number whihidenti�es a partiular SA uniquely between two mahines. Its purpose is todistinguish among di�erent SAs from eah other. SPI is sent on the wire.
• Destination Address. Address of the devie for whom the SA is established.
• Seurity Protool Identi�er. IPSe provides the following seurity proto-ols for the assoiation:� Authentiation Header (AH). Provides data integrity and authentiation,but not privay beause the IP payload is not enrypted. AH is notommonly used in pratie.� Enapsulating Seurity Payload (ESP). Enrypts and authentiates a on-netion data �ow. The use of ESP [25℄ is more ommon than AH beauseit is a superset of ESP.Eah protool supports two modes of operation [26℄:1. Transport mode. This mode protets the tra� between two end-hosts[42℄. The transport mode is not ompatible with NATs whih is one reasonwhy it is not used widely.� AH. O�ers seurity to seleted portions of the IP header, headerextensions and seleted options.� ESP. O�ers seurity for protools higher than IP, beause only theIP payload is enrypted.2. Tunnel mode. Used for network-to-network, host-to-network or host-to-host ommuniations over Internet. IPSe enapsulates the whole IPdatagram, inluding the header. Therefore, the paket must be enapsu-lated within a seond IP paket in order to be routed. If AH is employed,some parts of the built IP header an be enrypted.



CHAPTER 2. BACKGROUND 15Seure Assoiation Database (SAD) stores information related with SAs. An SA isunidiretional, meaning that a single SA only handles inbound or outbound tra�.To seure bidiretional ommuniation, two SAs must be reated.The main di�erene between SPs and SAs is that an SP spei�es what we want toenrypt and an SA details how we want to seure it.2.4.2 IPSe with HIPBase Exhange sets up key material for SAs to enrypt the data tra�. After theBase Exhange, the ESP protool [44℄ protets user data.HIP urrently supports a new ESP mode alled Bound End-to-End Tunnel (BEET).This mode ombines transport mode format and tunnel mode semantis. The"outer" addresses go on the wire and the "inner" addresses are the ones the ap-pliation sees. The BEET mode with HIP uses HITs as inner addresses and IPaddresses as outer addresses. Figure 2.9 shows the di�erene between BEET, tunneland transport mode. As we an observe, transport and BEET mode headers havethe same syntax. Furthermore, BEET mode semantis are similar to tunnel modeones, although the tunnel mode introdues an extra IP header.
IP ESP TCP DATA IP ESP TCP DATAIP

ESP DATAIP TCP

Transport mode Tunnel mode

Outer @

Inner  @

Beet mode = Transport header + Limited tunnel semanticsFigure 2.9: Comparison of BEET, transport and tunnel modeThe BEET mode does not inlude HITs in the paket whih goes on the wire. In-stead, the SPI impliitly de�nes the HITs. IPSe links eah assoiation to two ESPSAs, one for inoming and one for outgoing pakets. An SA pair is indexed by 2SPIs and 2 HITs. HIP updates these assoiations and removes them when the HIPassoiation �nishes.2.5 Raw soketsA soket [63℄ in the ontext of TCP/IP is an end-point of a bidiretional ommuni-ation �ow. It allows ommuniation between an appliation and the TCP/IP stak.



CHAPTER 2. BACKGROUND 16Basially, we an divide soket types into three types [17℄:
• onnetionless sokets (SOCK_DGRAM)
• onnetion-oriented sokets (SOCK_STREAM)
• raw sokets SOCK_RAWHowever, we limit the disussion to raw sokets. One of the most important featuresof raw sokets that we use in the LSI implementation of HIPL is the possibility toaess the paket header and hange it. Non-raw sokets usually strip the headerand reeive only the payload.Raw sokets allow us to implement Layer 4 protools (L4) or L3.5 like HIP in theuserspae and to implement some proessing from those protools that are normallyproessed in the kernel [4℄.2.5.1 CreationWhen an appliation establishes network ommuniations, it �rst needs to open asoket by alling the soket() funtion. The �rst argument to the funtion sets theaddress family. It an be AF_INET for IPv4 or AF_INET6 for IPv6-enabled sokets.The seond argument determines the soket type. For example, the SOCK_RAW valuereates a raw soket. Finally, the third argument de�nes the protool. Figure 2.10shows the prototype of the soket system all for reating a raw soket.int soket(int family, int type, int protool)Figure 2.10: The soket funtionRaw sokets an use the funtion bind() in Figure 2.11. It an set the soure addressused to send output pakets over the raw soket and it also ats as an input �lter.One of the most ommon errors from bind is Address already in use. This error isdue to an existing onnetion that is already listening on the port in whih the servertries to bind. One possible solution is to bind the port to the wildard interfae afterthe send all �nishes.2.5.2 Output paketThe user proess must alulate and set the header heksum of the transport layerpaket before sending it, assuming that the spei� transport protool employs hek-sums. Raw sokets allow that the protool implementation an either speify the



CHAPTER 2. BACKGROUND 17int bind(int sokfd, onst strut sokaddr *my_addr,soklen_t addrlen)Figure 2.11: The bind funtionwhole IP header or let the networking stak reates it. The implementation ontrolsthis using the IP_HDRINCL soket option. Only IPv4 sokets an use the IP_HDRINCLoption. Figure 2.12 shows the sendto interfae.size_t sendto(int sokfd, onst void *buff, size_t bytes, int flags,onst strut sokaddr *to, soklen_t *addrlen)Figure 2.12: Funtion for sending data2.5.3 Input paketThe kernel reeives a datagram and passes it to the raw soket only if the threefollowing onditions are true:
• The raw soket protool and the reeived datagram protool �eld math.
• If the loal IP address bound to the raw soket by bind mathes the destinationIP address of the paket or the soket has not been bound or it is bound toINADDR_ANY for IPv4 or IN6DDR_ANY_INIT for IPv6.
• If a foreign IP address was spei�ed with onnet and mathes the soure IPaddress of the paket.If these three prerequisites are met, the kernel passes the datagram to the raw soket,inluding the IP header if the IP_HDRINCL soket option is ativated.2.6 Introdution to the libipq libraryLibipq [33℄ is a development library for iptables userspae paket queuing [32℄. Net-�lter provides a mehanism to queue pakets to the userpae and then outputtingthem bak to the kernel with a verdit that determines whether the kernel mustaept or drop the paket. HIPL uses this mehanism for modifying the paket andreinjeting it to the kernel. We will give an introdutory overview to the basi APIusage.



CHAPTER 2. BACKGROUND 18Firstly, in order to rediret the pakets to the userspae, an iptables rule must beset up with the argument QUEUE as follows:iptables -I OUTPUT -d LSI -j QUEUEThe before rule queues all output pakets whose destination address is an LSI. Thenext step is to initiate an ipq handle to read the queued pakets and set the mode toget the data. There are two possible modes: metadata (IPQ_COPY_META) or payload(IPQ_COPY_PACKET). These funtions are illustrated below.h = ipq_reate_handle(0, PF_INET)ipq_set_mode(h, IPQ_COPY_PACKET, BUFSIZE)Funtion ipq_read reads paket ontents and funtion ipq_message_type returnsinformation about this ontent. Spei�ally, if it is a network paket, it returns thevalue IPQM_PACKET and if it is an error message, it returns the value NLMSG_ERROR.Then, ipq_get_paket gets the paket ontent. At this point, paket ontent an bemodi�ed prior to reinjetion bak into the kernel. If an appliation modi�es a paket,it must update heksums. Otherwise, the kernel disards the paket beause of aninvalid heksum. Furthermore, queue handlers are IP protool spei�, hene thepaket IP family must stay unhanged. Funtion ipq_set_verdit allows us to setthe paket verdit: ACCEPT or DROP. If the verdit is ACCEPT, the paket ontinuesthe proess through the stak. A DROP verdit drops the paket. The funtion ipq_-set_verdit sets the verdit depending on the id of the paket, this is a �eld whihallows libipq to distinguish the pakets beause its value is unique.ipq_read(h, buf, BUFSIZE, 0)ipq_message_type(buf)ipq_get_paket(buf)ipq_set_verdit(h, paketId, NF_ACCEPT,0, NULL)Finally, the next all loses the handle:ipq_destroy_handle(h)2.7 Introdution to NetlinkNetlink [15℄ allows userspae appliations to ommuniate with the kernel. It is usede.g. by Berkeley Internet Domain (BIND) [54℄ to on�gure routing-related informa-tion. It sets the following aspets of the network ontrol plane [24℄:
• NETLINK_ROUTE. Userspae routing daemons use netlink to update the kernelrouting table.
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• NETLINK_FIREWALL. IPv4 �rewall ode sends pakets through netlink.
• NETLINK_NFLOG. Communiation hannel for the userspae iptable manage-ment tool and kernel spae Net�lter module.
• NETLINK_ARPD. Manages the ARP table from userspae.To use netlink, the appliation has to reate a soket. The netlink address familyis AF_NETLINK and the type is either SOCK_RAW or SOCK_DGRAM. The protool typerefers to the netlink feature the soket uses.2.7.1 Message FormatFigure 2.13 illustrates netlink messages. All netlink messages onsist of a headerplus a payload.

Ancilliary DataPAD
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NLMSG_NEXTNLMSG_DATA

NLMSG_LENGTH

NLMSG_ALIGNFigure 2.13: Netlink message and netlink maro interationThe header ontains metadata about the message. The header is depited in Figure 2.14.strut nlmsghdr{__u32 nlmsg_len; /* Message length: Header + data */__u16 nlmsg_type; /* Message type */__u16 nlmsg_flags; /* Additional flags */__u32 nlmsg_seq; /* Sequene number */__u32 nlmsg_pid; /* Sending proess PID */} Figure 2.14: The netlink header struture2.7.2 Netlink MarosThe following maros build and manipulate the messages. For more information, see[15℄.
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• NLMSG_ALIGN. Used internally by the other maros. Rounds up the length of anetlink message.
• NLMSG_DATA. Given a pointer to a netlink header struture, this maro returnsa pointer to the anillary data.
• NLMSG_LENGTH. Sets the nlmsg_len �eld of a netlink message header. Themaro returns the size of the payload inluding the header, rounded up to thenearest NLMSG_ALIGNTO bytes.
• NLMSG_NEXT. If a netlink message has more than one response, this funtion�nds the next response.2.8 Introdution to Dynami Linking with LD_PRELOADDynami linking provides the possibility of interepting a funtion all that an appli-ation makes to any shared library at running time [9℄. One the interposer libraryinterepts the all, it an all the real funtion the appliation intended to all, aswell as overwrite the funtion all and modify the original funtionality. E.g. inHIPL we an load the variable with three interepted libraries:export LD_PRELOAD=libinet6.so:libhiptool.so:libhipopendht.soThe interposition with the real all is divided into two steps:1. Create the interposer library. This will overwrite funtions from other libraries,like e.g. glib. The interposer library may ontain the implementation of thefuntions to interept.2. Set the LD_PRELOAD shell environment variable with the absolute path tothe interposer library.When the appliation alls the funtion that the interposer library rede�nes, as thislibrary is loaded before the other ones, the loader �rst �nds the symbol of the mod-i�ed library when trying to resolve the external referene [19℄.If the user or administrator does not want to use the interposition library, he or shemust unde�ne the LD_PRELOAD variable.We must take into aount that setuid programs disable LD_PRELOAD, in orderto prevent seurity problems. In addition, LD_PRELOAD is not available for alloperative systems and might have problems with some Linux extensions, suh ase.g. Seurity-Enhaned Linux (SELinux). Another disadvantage is the use of LD_-PRELOAD with haining appliations, i.e., when an appliation is preloading the



CHAPTER 2. BACKGROUND 21same funtion with two di�erent interposition libraries, how do we know whih isthe library that the loader alls �rst?2.9 TESLATESLA is a transparent and extensible session-layer arhiteture for end-to-end net-work servies [21℄. There has been an inreasing importane of session-layer serviesin the Internet, i.e., servies whih have a ommon �ow between a soure and des-tination, and produe groups of �ows using shared ode and possibly shared state.Current researh fouses on inreasing transport-level funtionality, some examplesare: sharing ongestion information, end-to-end session migration for mobility, en-ryption servies or setting up multiple onnetions to improve the throughput be-tween a soure and a destination. Originally these servies were in the kernel level,though it would be advantageous to have them in the user level. This later approahis a ompliated proess, beause the implementation must speify the internal logi,algorithms and handle details suh as proess management or interproess ommu-niation, inreasing the programmer's time and e�ort. The three design goals ofTESLA are:1. Provide a high-level abstration to session servies, whih operate on network�ows and treat �ows as objets.2. Con�gure session servies transparently from the appliation. TESLA allowsservies to de�ne APIs to be exported to TESLA-aware appliations.3. Provide the possibility of omposing di�erent servies to o�er new funtional-ity. TESLA writes session servies as event handlers with a allbak-orientedinterfae.TESLA is a C++ framework whih ould be on�gured using an interposition libraryto modify the interation between the appliation and the system. An implementa-tion of this design is available in [60℄.2.9.1 ArhitetureAs we previously explained, TESLA is an interposition layer between the appliationand the operating system or libraries, providing an abstration level for session-layerservies. It uses the �ow handler onept to provide this abstration. Eah sessionservie is an instane of a �ow handler where TESLA allows ommuniation betweenthe di�erent session servies. On an abstrat level, a �ow handler deals with tra�orresponding to a single soket. There is another �ow type alled network �owwhih is a stream of bytes sharing a logial soure and destination. The �ow handler



CHAPTER 2. BACKGROUND 22operates or transforms an input byte stream, suh as e.g. ompressing or enryptingthe input network �ow, and returns one or more network �ows. Therefore, input�ows orrespond to upstream handlers, suh as end appliation, and output �owsmap to down-stream handlers, e.g. send routine.2.9.2 InterpositionTESLA ats as an interposition library. The library libtesla.so is added as ashared library with the LD_PRELOAD environment variable, a onept disussed insetion 2.8. This library ontains the interposition library but not the handlers. Thehandlers are provided by the flow_handler API. Flow handlers are virtual methodsharaterised by being asynhronous and event-driven, hene methods must returnimmediately. We an divide them into two groups:
• Downstream methods. Invoked by the input �ow, they provide an abstrat �owto the upstream handler.
• Upstream methods. Invoked by the handler output �ow. They at as allbaksinvoked by the upstream handler.Some �ow ontrol methods exist in both groups in order to avoid bottleneks in theappliation or in TESLA. A �ow handler may signal the input �ow to stop sendingdata and later on restart the handler, as well as an output �ow may hek whetherthe upstream handler is available. Sometimes the handler must re-enable data �owafter ertain period of time and TESLA provides a timer for this purpose. Moreover,in some ases the handler must provide additional servies. For this reason, TESLAprovides a mehanism to send events asynhronously to the appliation.2.10 TUN/TAPTUN and TAP [30℄ are virtual network kernel drivers. TUN/TAP is similar to aPoint-to-Point or Ethernet devie, whih reeives and sends pakets between userspaeprograms. TUN/TAP usually sends Ethernet or IP frames, depending on the hosendriver, between the host network and a proess. The main purpose of TUN/TAP istunneling network tra�.TUN simulates a network devie and operates at the network layer (Layer 3) of theOSI model. It is used for routing pakets. A userspae appliation an send IPframes to the interfae /dev/tunX and the kernel will reeive the frame from thisinterfae, as well as the other way around.



CHAPTER 2. BACKGROUND 23TAP simulates an Ethernet devie and operates in the data link layer (Layer 2) of theOSI model. It an be used to reate a network bridge. A userspae appliation ansend Ethernet frames to the interfae /dev/tapX and the kernel an reeive framesfrom this interfae.The main di�erene between TUN and TAP is that TUN operates with IP framesand TAP with Ethernet frames.TUN/TAP is used for Virtual Private Networks (VPNs). Some related projets us-ing it are OpenSSH or OpenVPN. In addition, TUN/TAP is also used for virtualmahine networking. Projets suh as Bohs or VirtualBox use it.2.11 Dummy interfaeTCP/IP uses a dummy interfae to assign an IP address to the loalhost. SerialLine Internet Protool (SLIP), Point-to-Point Protool (PPP) and HIP for HIPLimplementation use dummy interfaes. This interfae is Linux-spei�.The reason for a dummy interfae is the need for an internal IP address although thehost is not onneted to an Internet Servie Provider (ISP). There are network-awareappliations suh as mail whih need to have an IP address to onnet to, even ifdoes not lead anywhere. For example, onsider a laptop whih is disonneted fromthe network, with the loopbak interfae as its single network ative devie. Anappliation may want to send data to another appliation in the same host. Theappliation tries to send data with the IP assigned by the ISP but the laptop isnot onneted. Thus, the kernel does not know the IP and disards the datagram,returning an error to the appliation. However, if the dummy interfae serves as thealter ego of the loopbak interfae with the external IP address assigned and routed,every datagram to this IP is delivered loally [28℄.



Chapter 3Problem Statement
3.1 Deployment ProblemAmongst the ative implementations of the HIP protool, HIPL developed by HIIT[13℄ is the only one whih does not yet o�er total support for IPv4-only appliations.We must note that IPv4-only appliations are only supported by HIPL in the op-portunisti mode [14℄.Although IPv4 is still the fato of today's Internet, network infrastruture and ap-pliations are transitioning towards the next generation of Internet Protools, IPv6.Nowadays, as we an not talk about an IPv6-enabled Internet, both IP protoolsmust oexist.The urrent HIPL implementation already supports IPv4 and IPv6 networks, as wellas IPv6 appliations. For IPv4 support, the strategy is to map an IPv4 address inan IPv6 struture. Thanks to this mehanism, the whole of the ode struture forIPv6 an be reused for IPv4. However, there are still some problems with IPv4 andIPSe, suh as the legay NAT traversal [1℄.However, HIPL does not yet support IPv4 appliations. The existene of IPv4 sup-port is important beause there is yet a lak of IPv6 appliations for Linux.We assume that there will be no �ag day to deploy HIP and espeially that the Inter-net infrastruture (DNS servers) will not have HIP support immediately. Therefore,we assume that HIP requires tools for inremental deployment. The opportunistimode an be used as a mehanism to disover when the ommuniations an beestablished using HIP with the peer. Currently, the opportunisti mode design is aninterposition library, but this thesis proposes to hange this shema.24



CHAPTER 3. PROBLEM STATEMENT 25The main topis of this thesis are:
• Desribe the LSI identi�er.
• Support IPv4-only appliations. The sope is limited to the ICMP and ICMPv6protool, as well as TCP and UDP transport protools.
• Add interoperability between IPv4 and IPv6 appliations.
• Support opportunisti mode as a system library.The design and implementation are onentrated around boosting HIP deployment.3.2 Elaboration of the Deployment ProblemsThis setion elaborates the main deployment problems that we already listed in theprevious setion. We desribe the main problems and introdue a brief desriptionof how our solution an solve them.3.2.1 Desribe the LSI Identi�erThe LSI identi�er is syntatially an IPv4 address but semantially represents aHIP identi�er. There is an open disussion about whih must be the most onve-nient range for LSI address spae. This address spae may be stati or dynami.However, whatever option is hosen introdues di�erent problems whih would beanalysed in this thesis.One aim of this thesis is to widely doument the LSI identi�er whih is always men-tioned very brie�y in di�erent RFCs and drafts.3.2.2 Supporting IPv4-only AppliationsCurrently IPv6 appliations are supported by HIP using the HIT as an appliationlayer identi�er. HITs resemble IPv6 addresses, thus developers do not have to modifythe appliation to make it use HIP and the appliation is unaware of HIP. A similarmehanism is neessary to support IPv4 appliations. Therefore, HIPL implemen-tation must be extended in order to support a new identi�er alled LSI.LSIs resemble IPv4 addresses. The hoie we made implies that LSIs an be in-terpreted orretly only by the loalhost beause they are valid only within loal



CHAPTER 3. PROBLEM STATEMENT 26ontext. This statement generates referral-related problems. The referral problemoriginates from broken appliation layer protools that send IP addresses (HITs orLSIs in the ase of HIP) on the wire. When suh a protool sends LSIs on wire, theybeome invalid or inorret at the peer host. In this thesis, we study how to solvethis problem and we will see that the system-based opportunisti mode ould be onepossible alternative for solving that.One aim of this thesis is to analyze the di�erenes and performane between HITsand LSIs, as well as to show an example of the referral problem using LSIs.Appliations the LSI implementation supports are limited to the ones using theICMP protool, as well as TCP and UDP transport protools. Other protools areout of the sope of this thesis.3.2.3 Interoperability between IPv4 and IPv6 AppliationsThe design and implementation adds support for IPv4 appliations. As the imple-mentation already supports IPv6 appliations, both IP versions will be supportedby HIP and, therefore, it is possible to enable ommuniations between di�erent IPversions.Owing to the transition between both IP versions, IPv4 appliations may ontinueworking with IPv6 appliations. For example, an IPv4 appliation on the lient mustbe able to ommuniate with the IPv6 appliation on the server, and the other wayaround.Moreover, the use of IPv4 appliations working over an IPv6 network using HIP,ould be a ompelling story for HIP. This is beause in general IPv6 migration re-quires dual staks, that is, a host has both an IPv4 and an IPv6 protool stak,but HIP uses that in a di�erent manner. At some point, in an IPv6-only world,systems will be able to turn o� their IPv4 stak [55℄. In a HIP ase where there arean IPv4 lient and an IPv6 server, for example, the IPv4 address used by the lientappliation orresponds to the LSI, and this LSI would be translated to a HIT bythe HIP layer. At this point, we suppose that the network address is IPv4. Whenthe paket arrives to the server the paket is translated until it ontains the IPv6identi�ers alled HITs. In this ase, the di�erene to a non-HIP environment is thatHIP provides two identi�ers to support both IP versions. However, without usingHIP, the IPv4 and TCP modules detet that the destination soket is an IPv6 one,and onverts the IPv4 address into the equivalent IPv4-mapped IPv6 address.One goal in this thesis is to deide when the use of one protool is preferable over the



CHAPTER 3. PROBLEM STATEMENT 27other depending on the IP version of the appliation of destination. Moreover, wewant to provide ommuniation between appliations whih use di�erent IP versionswith our implementation.3.2.4 Supporting Opportunisti Mode as a System LibraryAs disussed in the bakground hapter, the dynami linking library shims systemalls. Interposition libraries interept these alls and hange the expeted funtion-ality. The LD_PRELOAD environment variable an load the interposition libraries.The urrent HIPL opportunisti mode library uses this mehanism.Our proposal is to hange this behaviour and inlude the opportunisti mode duringthe stati ompilation, moving the opportunisti library from the user to the sys-tem level. The main advantage is that the system-based opportunisti mode doesnot need extra libraries and is independent of support to individual sokets APIfuntions. Furthermore, this method an make the user experiene easier using HIPbeause the user does not have to on�gure any environmental variable.Both approahes do not need to modify the soure ode of appliations thus, thelibrary supports legay appliations.In addition, the system-based opportunisti mode allows to support networks with-out PKI. A PKI [20℄ provides end-to-end seurity and it is an arrangement that bindsuser identities with their publi keys by means of a Certi�ate Authority (CA). Thereis a registration proess for the binding whih must be arried out by software orunder human supervision.However, HIP does not need a PKI. Sine the identity is represented by the publikey, any proper protool able to hek that the party owns the private key orre-sponding to its publi key is enough. In our ase, this authentiation protool isinluded during the Base Exhange whih reates and negotiates the keys. However,if the peer does not have a PKI, the HIP host must use a non-PKI. The deployment ofglobal PKI infrastruture is virtually impossible, thus the opportunisti end-to-endseurity, whih is based on the onept of Leap of Faith seurity or weak authenti-ation, is enough for heterogeneous wired and wireless networks.As there is no �ag day where the majority of the hosts will support HIP, the mostommon senario would be to establish ommuniation with a non-HIP-aware peer.In this ase, HIPL must fallbak to a non-HIP ommuniation. The system-basedopportunisti mode inludes this feature.



CHAPTER 3. PROBLEM STATEMENT 28One aim of this thesis is to analyze the di�erenes and performane between thesetwo approahes.



Chapter 4DesignThis hapter desribes the semantis of the LSI identi�er. We disuss the behaviourdesigned on both lient and server side and also the interoperability design betweenthe two IP versions. Afterwards, we introdue a design proposal for an opportunistimode that reuses the LSI design.4.1 Loal Sope Identi�erThis setion de�nes the main features of LSI and explains the di�erent tehniquesHIPL uses in order to generate this identi�er.4.1.1 De�nitionIn our design, LSI is independent from the HIT. Hene, an LSI is not derived fromHIT. This approah eliminates ollision and seurity problems raised when HIP gen-erates an LSI from a HIT, beause an LSI is muh shorter than a HIT.In our implementation, an LSI address is alloated from the 1.0.0.0/8 subnet by de-fault, but the user or administrator an hange the pre�x dynamially. As initial de-ision, we hose the pre�x 192.168.0.0/24 but due to NAT problems, we moved to theother pre�x. These problems arose beause IANA alloates the range 192.168.0.0/16for private-use networks. Consequently, HIP ould not di�erentiate between a NATaddress and an LSI identi�er. The atual approah ontinues to generate prob-lems with NATs beause the 1.0.0.0/8 address spae is unalloated by IANA, thusnot registered to HIP. The related problems and possible solutions are disussed inhapter 6. 29



CHAPTER 4. DESIGN 304.1.2 LSI GenerationWhen the user or the system starts running hipd and runs an IPv4 appliation, theremust exist a mapping between the HIT, the LSI and the IP. The user an exeutethe mapping manually. Otherwise, hipd establishes the mapping automatially. Thehipd does not send the LSI on wire but it needs to know the orresponding HITand IP for HIP and ESP-related proessing. We must notie that the peer LSI mustbe unique in the mahine, beause the host an not have two di�erent peer hostnames mapped with the same peer LSI. There are di�erent ways for establishing themapping between the identi�ers and the IP:1. Manually. The hiponf tool provides an option whih the user uses to mapsLSIs manually.2. DNS intereption. The DNS Proxy extension for HIPL inludes support forLSI resolution. When the appliation makes an AAAA reord request, theDNS Proxy module returns a HIT as an AAAA reord. When the appliationmakes an A reord request, the DNS Proxy program alloates and returns anLSI as an A reord response.3. Base Exhange. The �rst two possibilities show the mapping from the point ofthe initiator, but the responder must map LSIs. The responder generates anLSI for initiator automatially. The hipd handles the automati LSI generationduring the Base Exhange, spei�ally when the responder reeives the I2paket.4.2 Paket ProessingThe LSI proessing onsists of inbound and outbound paket handling. The HIP�rewall (hipfw) handles input and output paket proessing for LSIs in HIPL im-plementation. It should be noted that hipfw is atually a multi-purpose daemonthat an also handle HIP-based aess ontrol (hene the name hipfw). Moreover,interoperability with HIPL userspae IPSe needs further work.Below is an example of a lient-server senario. The systems are running hipd, whihis responsible of HIP ontrol plane signalling, and hipfw daemon. A lient and aserver are running appliations, e.g. netat [41℄ whih is a networking utility whihreads and writes data aross network onnetions, and both of them using TCP asthe transport layer protool. The server starts up a servie at port 5555. The lientappliation tries to onnet to the server over TCP. Then the server aepts theonnetion, reads the reeived data and prints it on the sreen.



CHAPTER 4. DESIGN 314.2.1 Output Paket ProessingThe output paket proessing is illustrated in Figure 4.1 and desribed below.
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Figure 4.1: Client-side shema1. The user runs a lient appliation.2. The appliation queries the resolver in order to translate the hostname.3. The resolver returns the LSI assigned to this hostname.4. The appliation ontats the peer LSI by alling onnet().5. The paket traverses through sokets and TCP layers until hipfw aptures itin the network layer owing to an iptables rule.6. The hipfw heks whether the loal database already ontains the peer HITorresponding to the peer LSI. If it does not �nd the entry, hipfw triggers theBase Exhange through hipd.7. When the Base Exhange �nishes orretly, hipd ommuniates the peer HITand LSI to hipfw.8. The hipfw an build the new paket, translating the LSI pair to the HIT pair.In addition, hipfw ahes the HIT-LSI mapping for future pakets. In this



CHAPTER 4. DESIGN 32way, there is no triggered seond Base Exhange for the same onnetion andthe proess speeds up. Then, it reinjets the paket again to the network stakwith HITs onverted to LSIs.9. The IPSe module translates HITs to routable IP addresses and an SPI number,handles ESP enapsulation and transmits the paket on wire.4.2.2 Inoming Paket ProessingFigure 4.2 shows inbound paket proessing. We fous mainly on the inbound pak-ets that the server proesses.
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Figure 4.2: Server-side shemaThis senario is handled as follows:1. The server reeives a paket.2. A SA entry in the SADB demultiplexes the SPI �eld of the ESP header. TheESP module derypts the paket and onverts the IPv4/v6 header to an IPv6header ontaining the HITs.3. An iptables rule in hipfw aptures the paket. At this point, the hipfw hekswhether LSI proessing is neessary or not, as we desribe in more detail inthe following setion.4. If hipfw applies LSI proessing, it reinjets the paket to the stak again, butthis time with an IPv4 header ontaining LSIs.



CHAPTER 4. DESIGN 335. The paket with the LSIs arrives to the stak and the stak delivers the paketto transport and appliation layers.4.2.3 Interoperability IPv4 and IPv6As we have explained in subsetion 2.2.3, HIP supports IPv4 and IPv6 interoper-ability. This feature ours during inbound paket proessing. The problem is howhipfw manages to demultiplex an inoming paket to an LSI or a HIT. An operatingsystem proess is identi�ed by an IP address, a port number and the network pro-tool. We must notie that a single port an be oupied by the same appliationbut with di�erent address family (or protool), as Figure 4.3 illustrates.Following poliy onsiderations spei�ed in [?℄, we design a loal poliy in order todeide when a HIT must be translated to an LSI. The hipfw demultiplexes to anLSI if no proess is listening to IPv6 on the partiular port number. In other words,HITs are preferred over LSIs beause they do not have the LSI disadvantages, as e.g.non-routable or allbak problems and furthermore, we expet IPv6 to dominatein the future. This logi applies only to TCP and UDP and not to ICMPv4 andICMPv6. This is beause the ICMP protool is part of IP where ICMP messagesare usually generated as a response to errors in IP datagrams.
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Figure 4.3: UDP and TCP headers ontain the destination port number. The hipfwdeides whih IP protool to hoose depending on the absene or presene of thelistening proess in the IPv6 or IPv4 address family4.3 Alternative Design for LSIsOur design is entered around the idea of apturing LSI pakets with iptables rulesin hipfw and transforming them only when it is neessary. This approah overloadshipfw work and adds some problems, suh as the inreased lateny per eah paket



CHAPTER 4. DESIGN 34beause of the proessing time.The alternative design is to manage LSIs using IPSe SAs instead of the iptablesrules. An SA pair ould be assoiated with two SPIs, two HITs and also two LSIs.Furthermore, there must exist an SP that mathes pakets with LSIs or an LSI pre�x.We disarded this design beause urrent Linux IPSe annot assoiate both an LSIpair and a HIT pair into a single SPI.4.4 Opportunisti Mode DesignThe opportunisti mode was already supported in the HIPL implementation as auser library. Our implementation goal is to move the opportunisti mode library tothe system level by reusing the LSI design for supporting the opportunisti mode.The main advantages of this approah are:
• Solving opportunisti library bugs. hapter 6 examines the supported systemalls. But, we an already omment that supporting all soket alls is umber-some.
• Solving library dependeny problems. There are some problems with hainingof LD_PRELOADed appliations. All hained libraries must support hainingproperly or otherwise the appliation's network onnetivity is broken.
• Supporting more appliations. The system opportunisti mode supports moreappliations beause it is independent from the operating system and onlydepends on the transport layer protools supported by hipfw.The library does not translate raw sokets or sokets already bound to HITs and itan translate IPv4 or IPv6 addresses to HITs. As the address size for the di�erent IPversions is di�erent, it reates for eah IP-based soket a ompletely new HIT-basedsoket [36℄.The system-based opportunisti mode design is desribed below. We must di�er-entiate two possible senarios, depending on the peer apability to support HIP.However, both senarios have the �rst steps in ommon, before the peer answers theBase Exhange. We must notie that the loal or peer address an hange duringthe ommuniation, requiring a new Base Exhange.Figure 4.4 shows a �rst senario where the peer host is HIP enabled. We desribethe outbound paket proessing below.
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Figure 4.4: Opportunisti design: Peer HIP-aware1. The user or administrator runs an appliation.2. The appliation layer alls onnet(IP).3. The hipfw interepts the paket.4. The hipfw heks its loal database. If the destination address is alreadyassoiated with a HIT, hipfw goes to the �nal step.5. The hipfw triggers the Base Exhange in opportunisti mode with a HIT peerempty value. In this step, we must notie Base Exhange an use the TCPextension disussed in hapter 2.6. Base Exhange is ompleted suessfully and returns the peer HIT value.7. The hipfw maps in its loal database the peer HIT, the peer LSI and the peeraddress.8. The ESP stak enrypts the paket and sends it to the peer host.Figure 4.5 shows a seond senario where the peer host is not HIP-enabled. Wedesribe the outbound paket proessing below.1. The user or administrator runs an appliation.



CHAPTER 4. DESIGN 362. The appliation layer alls onnet(IP).3. The hipfw interepts the paket.4. The hipfw heks its loal database. If the destination address is alreadyassoiated with a HIT, we skip to the �nal step.5. The hipfw triggers the Base Exhange in opportunisti mode with a HIT peerempty value. In this step, we must notie Base Exhange an use the TCPextension disussed in hapter 2.6. Base Exhange is not established, therefore the peer does not support HIP.7. In order to avoid HIP-apability detetion the hipfw maps the IP address inits loal database, indiating with a �ag that the peer is not HIP-enabled.
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Figure 4.5: Opportunisti design: Peer not HIP-awareWe must larify the seond step in Figure 4.5 and Figure 4.5, where the IP is re-ferring to an address di�erent from a HIT or an LSI. Our implementation of theopportunisti mode allows to fallbak to non-HIP ommuniations if the peer doesnot support HIP, but using the LSI identi�er, we assume that the peer supports HIP,and, if the onnetion with HIP is not possible, the onnetion should be rejeted.At the input side, the reeiver of a paket should analyze the soure and destinationidenti�ers to deide when to apply LSI transformation.



Chapter 5ImplementationOur LSI implementation is based on the HIPL implementation. Originally, HIPLsupported only kernel-based IPSe. The IPSe implementation of HIPL was sup-ported in the userspae by the end of this thesis. This feature is relevant for the LSImodule beause both implementations modify hipfw omponent. Then, there is aneed to integrate the two extensions.HIPL is divided into �ve main omponents. The HIP daemon (hipd), the HIPon�guration tool (hiponf), optional HIP soket handler, the BEET extension forIPSe and the optional �rewall (hipfw). We have hanged the hipd, hiponf andhipfw omponents.In this hapter, we show di�erent senarios whih illustrate the interation betweenthe di�erent software omponents using sequene diagrams. In order to simplify,the full exeution trae is not shown. Instead, we fous on the most relevant fun-tions. Furthermore, the reader should not be onfused if he or she tries to �nd theorresponding funtions from the ode beause we have used shorter names here.The reader must also bear in mind that funtion parameters have been omitted forsimpliity.5.1 Loal Sope Identi�erThis setion studies the data struture for LSIs in HIPL implementation. Seondly,we explain implementation details about the di�erent tehniques HIPL uses in orderto generate this identi�er and to link it to a virtual interfae.
37



CHAPTER 5. IMPLEMENTATION 385.1.1 Data Struture for LSIsWe introdue a new identi�er in the HIP protool. As shown in Figure 5.1, an LSIis based on the in_addr struture.typedef strut in_addr hip_lsi_t;Figure 5.1: The lsi strutureThis struture handles Internet IPv4 addresses and it has a variety of representationsin the di�erent systems beause of a union. The ommon �eld is s_addr, a 4-bytenumber where eah byte represents an IP address digit.5.1.2 LSIs on the Virtual InterfaeIn HIPL, the host an have up to four HITs with eah assoiated with the or-responding LSI. The LSIs and HITs are ontained in dummy0 virtual interfae toprovide routes to the linux networking stak. There are three ways of on�guring it:1. Iotl alls made (as ifon�g handles it).2. Netlink alls (as iproute handles it).3. Through the /pro �lesystem.In the LSI implementation, we used the netlink library to populate the devie withthe respetive LSIs and the iotl library for removing them. It is important to notiethat although netlink supports more than one IPv4 address without reating aliases,iotl does not support it. The example in Figure 5.2 shows the di�erene betweenthe two ommands for reating a multihomed devie.ip addr add <networkaddress>/<prefixlength> brd + dev <devie>ifonfig <devie>:<aliasnumber> <address> netmask <netmask> upFigure 5.2: Command line syntax for iproute and ifon�g to bring up a devie withan address



CHAPTER 5. IMPLEMENTATION 395.1.3 LSI GenerationWe already explained the three possible ways LSIs are generated in hapter 4. Herewe will dwell on the implementation details.Manual on�gurationThe hiponf tool is a ommand line interfae for hipd. This tool parses the om-mands to the hipd and it has been extended in order to support LSIs. The user anspeify the LSI in the hiponf ommand, otherwise the daemon will generate the LSIon the �y, as shown in Figure 5.3.
hipconf hipd

hip_add_peer_map()

hip_add_peer_info()

hip_generate_lsi()

!LSI

hadb

hipconf add map HIT IP [LSI]

Figure 5.3: Hiponf add map sequene diagramAn example of how to use the hiponf tool for this purpose is shown below inFigure 5.4.>hiponf add map 2001:001b:2b1d:55f7:798a:f476:af0a:f826128.214.114.58 1.0.0.7>hiponf add map 2001:001b:2b1d:55f7:798a:f476:af0a:f826128.214.114.58Figure 5.4: A typial exeution of the ommand hiponf add mapAutomati on�gurationAutomati on�guration onsists of reating the mapping between the peer identi-�ers without using the hiponf tool. For this purpose, the user or administratormust add the HIT and optionally the LSI to the HIP resolver �le and the IP address



CHAPTER 5. IMPLEMENTATION 40in the hosts �le. The automati on�guration was already working for IPv6, althoughthe LSI information was not read from the resolver. Currently this funtionality issupported. And we added too the automati on�guration for LSIs whih is depitedin Figure 5.5.
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Figure 5.5: Automati peer information on�guration sequene diagramInitially, the user runs a legay IPv4 appliation using the LSI identi�er, whose pak-ets are aptured by the �rewall. The �rewall detets that the Base Exhange wasnot established for the peer LSI. Therefore, it triggers the Base Exhange and thehipd alls the resolver in order to look up the peer host information. One the hipdhas the information, this is added to the HADB and afterwards the Base Exhangeis set up with the peer host.DNS Proxy resolutionThe DNS Proxy extension for HIP provides HI/HIT-based look-up servie for theend-host. Unlike the rest of the implementation, this extension is implemented withPython. It interepts DNS requests from an end-host and returns a HIT instead ofan IP address if it �nds one.5.1.4 Modi�ed Database StruturesHIPL has mainly two databases whih store information about the loal host identi-ties and the urrent assoiations with the di�erent peers. In order to support LSIs,we modi�ed these two data strutures.



CHAPTER 5. IMPLEMENTATION 41Host Identity DatabaseThe Host Identity Database (HIDB) ontains the loalhost Host Identities and re-lated information, as shown in Figure 5.6. The HIDB ontains four loal HITs/HIsand also LSIs with eah HI tied to an LSI.hipd initializes the database upon startup.strut hip_host_id_entry {strut hip_lhi lhi;hip_lsi_t lsi;strut hip_host_id *host_id; /* alloated dynamially */strut hip_r1entry *r1; /* prereated R1s */strut hip_r1entry *blindr1; /* pre-reated R1s for blind*//* Handler to all after insert with an argument, 0 if OK*/int (*insert)(strut hip_host_id_entry *, void **arg);/* Handler to all before remove with an argument, 0 if OK*/int (*remove)(strut hip_host_id_entry *, void **arg);void *arg;}; Figure 5.6: HIDB reord strutureCurrently, hipd generates the loal LSIs statially when it starts running. As shownin Figure 5.7, hipd stores LSIs statially in an array and opies them to the HIDBwith the orresponding HIT. Furthermore, the �rst LSI ("1.0.0.1") is always thedefault LSI orresponding to the default HIT.stati har *lsi_addresses[℄ = {"1.0.0.1","1.0.0.2","1.0.0.3","1.0.0.4"};Figure 5.7: HIDB stati initializationHost Assoiation DatabaseIndependently of the HIDB, there is a seond database alled Host AssoiationDatabase (HADB). Its objetive is to reord HIP-related state information aboutpeer hosts. The database is indexed by the pair of loal and peer HIT. The LSIextension inludes the related lsi pair, omposed by the loal and the peer LSIs, to



CHAPTER 5. IMPLEMENTATION 42the entries in the database.5.2 Paket ProessingThe hipfw daemon already handles data plane intereption and it was therefore anatural plae also to implement LSI proessing. Furthermore, in order to preservemodularity, the LSI hipfw related funtions are in a separated module, whih on-tains funtions that handle inoming and outgoing LSI pakets and the ones thatreinjet the paket again to the network stak. The LSI module of hipfw ahesinformation about the peer HITs and the peer LSIs. hipfw uses this information inorder to trigger the Base Exhange or not. In ase the Base Exhange is alreadyestablished, hipfw gets the orrespondent HIT pair from the database.Next, we present some sequene diagrams from the point of view of a lient-servermodel.5.2.1 Output Paket ProessingWhen a datagram traverses through the network stak, hipfw aptures it with thefollowing rule:iptables -I OUTPUT -d 1.0.0.0/8 -j QUEUEThe hipfw output handler hain onsists of hip, esp and lsi handlers amongst someother handlers. As shown in Figure 5.8, the lsi module heks the state of the BaseExhange in the �rewall database (fwdb). If the answer is negative, it triggers theBase Exhange. Otherwise, hipfw reinjets the paket. The reinjetion proess on-sists of replaing the IPv4 header with an IPv6 header where the destination andsoure addresses orrespond to the HITs assoiated to the LSIs. hipfw handles thereinjetion using raw sokets.5.2.2 Inoming Paket ProessingIn this subsetion, we fous on inbound pakets at the server side. As well asduring the outbound proess, hipfw aptures inoming HIT-based pakets using thefollowing rule:ip6tables -I INPUT -d 2001:0010::/28 -j QUEUE
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Figure 5.8: Outgoing sequene diagram on the lient hostThe hipfw input hain ontains the same handlers as the output hain. We havebeen inspired by the mehanism used by netstat appliation. hipfw looks up thetransport protool-related �les plaed in the diretory /pro/net. If hipfw �nds thedestination port in the �le "/pro/net/tp6", it does not hange the paket, other-wise hipfw hanges the IPv6 header to an IPv4 header whih inludes the LSIs andreinjets the new paket to the stak. Then, the appliation reeives the reinjetedpaket. Beause reinjetion with "mangle" does not support interfamily transfor-mations, the kernel queues the paket in the outgoing queue instead of the inboundone, onsequently the proess requires to hek the identi�ers in order to deide theright diretion. The inoming senario is depited in Figure 5.9 where we assumethat the transport protool is TCP.
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Figure 5.9: Inoming sequene diagram on the server host5.3 Protool translation mehanismAs we already explained in the previous setion, the paket su�ers a translationmehanism from IPv4 to IPv6. In this setion, we dig into this proess, showing the



CHAPTER 5. IMPLEMENTATION 44onsequent header transformations.The hange of IP header a�ets the transport layer protools and ICMP. Therefore,the unique and main hange whih su�ers the header of these protools is the real-ulation of the heksum �eld, sine these header protools are based on an overlayheader whih ontains the IP addresses.As we are using raw sokets, with the outgoing pakets is the kernel whih buildsthe new IP header. Then, the transport layer hanges are enough. However, we hadto build the IPv4 header for inoming pakets whose destination appliation onlysupports IPv6. The reason is that bind funtion an not bound the soure addressto the soket beause this IP address is from the peer. In this ase, we further sim-pli�ed the proess not translating extensions or options. For ease of implementation,the header length and total length �elds are re-omputed. The address �elds are setaording to the address mapping between LSI and HIT. We diretly opied to TTLthe value from the Hop Limit �eld in IPv6.Unlike the above-mentioned �elds, there are some �elds where there is not an equiv-alene manner to express the information. This is the ase of the quality of servie or�ow-related �elds. This is beause the semantis in the IPv6 ontext for the qualityof servie di�er from the ones used by IPv4 [35℄. Then, we deided to set these �eldsto a default stati value, e.g. the value of zero for the type of servie �eld in theIPv4 header.As the MTU value for the dummy0 interfae is limited to 1280 bytes, there is nofragmentation and in onsequene we did not have to deal with the translation offragments.



Chapter 6AnalysisFirstly, this hapter presents the performane evaluation on�guration. Seondly,we analyze the results with di�erent harts and tables for TCP and ICMP protools.In addition, we study other related problems that we found during the analysis andtesting proesses. We introdue these topis in the following order: LSI addressspae, Maximum Transfer Unit, referral problem and LSI ompatibility with otherextensions.6.1 Performane Evaluation Con�gurationIn this setion we present on�guration of the performane measurements in di�erentsenarios. Furthermore, we explain the test platforms and software used.6.1.1 Test PlatformsWe performed our measurements on two mahines following the lient-server shema.The lient was the initiator and the server the responder. We used the hipl�userspae�2.6�path-1817 version in both mahines for testing LSI, HIT and Op-portunisti System Based senarios performane. We onneted the mahines usinga diret 1 Gbit link. The MTU default value in the dummy interfae was 1280 bytes.Below in Table 6.1 we desribe the hardware and operative system harateristison both mahines used during the tests. The network layer is always IPv4 and theupper layer address is IPv4 when it is appliable.6.1.2 Test SoftwareWe used Iperf version 2.0.2 for the TCP throughput testing tool [18℄. For a TCPonnetion, Iperf shows the bandwidth and throughput, and by default sends an45



CHAPTER 6. ANALYSIS 46Initiator ResponderUbuntu Hardy 8.04 64-bits Ubuntu Hardy 8.04 64-bitsKernel 2.6.25.8 (64-bits) and BEETPATCH Kernel 2.6.25.8 (64-bits) and BEETPATCH2048 KB 4096 KBIntel(R) Core(TM) 2 CPU T64002.13GHz 2 x Intel(R) Core(TM) 2 Duo T73002.00GHzTable 6.1: System on�guration of the testing environment8KB array for 10 seonds. In addition, we tested the performane of the systemall onnet() with the appliation onntest-lient-hip whih is inluded in hipl�userspae�2.6�path-1817. In both test senarios, we used the tool hiponf rst all inorder to reset the established onnetions. Therefore, we an ompare the inrease oftime when hipd has to establish a new onnetion with a peer and the time neededduring normal tra�, when both hosts have already set up the onnetion.We tested the ICMP and ICMPv6 protools using the ping and ping6 tools [47℄. Theping program sends an ICMP eho request message and expets an ICMP eho replyto be returned. In addition, it an be used to measure the Round-Trip Time (RTT)to a host. We show the arithmeti mean and the standard deviation for the RTTvalues aptured. We show a testing senario of 20 samples for LSI, HIT, SystemBased and User Based Opportunisti Modes and �nally a plain ICMP senario.6.1.3 Test ProedureWe used the following test plan to ondut our measurements. We tested TCP andICMP running hipd and hipfw on both mahines. A desktop omputer ats asthe initiator and a laptop as the reeiver, where eah measured result onsists of20 samples. Firstly, we fous our tests in the throughput during data tra� usingTCP over ESP where we ompare the performane of LSIs, HITs and the user-basedopportunisti mode. Finally, we tested ICMP and ICMPv6 protools with LSI andHIT identi�ers, using the opportunisti mode and without a HIP environment.6.2 Results and Analysis of the Performane Measure-mentsThis setion shows the results that we obtained with di�erent senarios following theon�guration that we explained in the previous setion. We fous on TCP studyingits throughput and onnet performane. Finally, we move to the ICMP results.
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6.2.1 TCP ThroughputIn Figure 6.1, we illustrate the average and the standard deviation of the throughputof data during HIP tra�. The x axis presents di�erent modes of HIP and the yaxis displays the throughput of the ommuniation in Mbits/s.
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Figure 6.1: Throughput of di�erent HIP modesThe hart shows that the average value for LSIs is 94 Mbits/s with a standard devi-ation value of 1.3 Mbits/s. The average throughput for HITs is 300 Mbits/s with astandard deviation of 5.1 Mbits/s. In the opportunisti mode senario, the averageof the user-based mode is 296 Mbits/s with a standard deviation of 5.0 Mbits/s andwith the system-based mode 54 Mbits/s with a standard deviation 0.7 Mbits/s. Aplain TCP onnetion has an average value of 942 Mbits/s with a standard deviationof 0.3 Mbits/s. As the measurements show, a ommuniation under HIP ahieves thebest results when it uses the HIT identi�er, followed by the user-based opportunistilibrary, although the di�erene in throughput between HIT and library-based senar-ios is almost non-existent. Furthermore, LSI has almost twie as good performaneas the system-based mode. The LSI identi�er and system-based modes are threetimes slower than HIT and library-based modes in proessing and delivering data.



CHAPTER 6. ANALYSIS 486.2.2 TCP onnetIn Figure 6.2, we illustrate the average and the standard deviation of the system allonnet(). In our testing environment, it is the program onntest-lient-hip thatalls this funtion. The x axis represents di�erent modes of HIP and the logarithmiy axis displays the time to omplete the Base Exhange and the TCP handshake inms after the appliation alls the system all onnet().
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Figure 6.2: TCP onnet() performaneThe results we obtained, without the logarithmi sale on the y-axis, show that theaverage value for LSIs is 3000 ms with a standard deviation value of 2 ms. Theaverage time for HITs is 47 ms with a standard deviation of 2 ms. This time onsistsof the time to omplete the Base Exhange and the TCP handshake. In the oppor-tunisti mode senario, the average of the user-based mode is 46 ms with a standarddeviation of 3 ms. Eah of these measurements set up the onnetion. As we anobserve with the following measurements, this proess highly inreases the responsetime of the system all. One the state is established, the average value for HITs,alled HIT old in the hart, dereases until 0.3ms with a negligible standard devi-ation. The same goes for the opportunisti user-based mode, named OpportunistiLibrary old in the hart, where the seond senario shows an average value of 0.7 ms.This test shows that the LSI has a surprisingly bad performane with a onstant3 seonds delay. This is related with the initial value of TCP's RetransmissionTimeout (RTO) timer. In a Linux operating system, the initial RTO is 3 seonds by



CHAPTER 6. ANALYSIS 49default. When the SYN paket does not arrive to the server or the SYN ACK to thelient, it auses a timeout with the initial RTO value [40℄ [59℄. The e�et of RTO inthroughput [3℄ is:
• The sender transmits few pakets til it expires.
• Sender shall restart in slow start mode with the initial value of the ongestionwindow (wnd).In the HIPL ontext, this is due to LSI implementation dropping data pakets un-til both peers establish the Base Exhange. Therefore, there are multiple paketlosses whih ause the RTO. The [3℄ introdues how to avoid RTO aused by mul-tiple paket losses with the modi�ed fast reovery algorithm of TCP New Reno orseletive aknowledgement (SACK) option and it explains how to avoid RTO withretransmitted pakets. Both methods should be applied in our ontext in order toavoid RTO.On the other hand, this behaviour is not present in the library implementation be-ause it bloks the soket alls until the host establishes the Base Exhange with thepeer. Then, no pakets are lost [36℄.6.3 ICMPThe results of the di�erent tested senarios are shown in Table 6.2.The mean RTT is 0.261 ms without using HIP in our testing senario, where thedeviation of the sample is 0.13 ms. The mean RTT using LSIs is 0.658 ms with astandard deviation of 0.044 ms. The mean RTT using HITs was 2.424 ms with astandard deviation of 0.147 ms. The system-based opportunisti mode has a meanRTT value of 1.119 ms with a standard deviation of 0.097 ms.Senario Average DeviationPlain ICMP 0.261 ms 0.13 msHIT based 0.319 ms 0.030 msLSI based 0.658 ms 0.044 msSys-basedOpp. Mode 1.119 ms 0.097 msTable 6.2: RTT values in a HIP and plain ommuniationResults show that a HIP ommuniation inreases the RTT. As we an observe, theRTT performane is twie as good with HITs instead of LSIs. Furthermore, the



CHAPTER 6. ANALYSIS 50system-based opportunisti mode is almost four times higher than the HIT identi�erand twie the LSI average.6.4 List of Supported IPv4 AppliationsWe tested ping, netat, ssh and ftp with LSIs during the development of the LSIs.We used the LSI diretly in the appliation layer beause DNS Proxy support forLSIs is not yet available.6.5 LSI Address SpaeWe deided to use a �xed address spae in the range 1.0.0.0/8. This address spaeis unalloated by IANA [16℄ whih means it an not be used by NATted networksor the LSI identi�er. However, we an take into aount that the use of LSI is loalin ontrast to NAT addresses whih go on the wire. Below we present the potentialproblemati senarios.Imagine a host with an appliation alling onnet() with an LSI. Moreover, the hostalso has assigned an IP address whih orresponds to a private IPv4 address in theLSI range. The hipfw will apture the paket beause of the iptables rule and willhange the LSIs to the HITs. This senario does not present any problem unless thedestination address, whih goes on the wire, is also in the LSI range. In this ase,our design reates an in�nite loop, beause hipfw translates the LSI to a HIT andafterwards to an IP equal to the LSI pre�x, thus hipfw aptures the paket againby the LSI output rule in iptables.On the input side there is no problem. The paket just arrives to an interfae suhas eth0.We present three possible solutions for avoiding LSI ollisions with NAT namespaes.Firstly, we propose the stati alloation sheme, reserving the 1.0.0.0/8 address spaefor HIP protool. The seond alternative is to use 1.0.0.0/8 and allow IANA toalloate eah address individually. The third alternative is to perform the LSI toHIT translation higher in the TCP/IP stak, onsequently a mehanism realizes theonversion before the paket reahes the kernel routing table. This last solutionimplies kernel hanges or interposition libraries.



CHAPTER 6. ANALYSIS 516.6 Maximum Transfer Unit and LSIsThe maximum size of a paket is theoretially determined by the IP protool. Speif-ially, the maximum size of an IPv4 datagram is 65535 bytes. This is beause of the16 bits value for the len �eld in the IPv4 header. The maximum size of an IPv6datagram is also 65575 bytes beause of a 16 bits �eld in the header. However, layer3 in the OSI model de�nes the Maximum Transfer Unit (MTU) whih representsthe maximum size of an IP datagram that the network devie an handle withoutfragmentation. The ommon MTU for an Ethernet devie is 1500 bytes, and it isthe value used by default with the dummy0 virtual interfae. When the frame sizeis bigger than the MTU, the paket must be fragmented.We observed a problem using LSIs when transmitting a �le with size of 1408 bytesor larger. As an example, let us onsider an appliation that sends a �le of 1500bytes. The hipfw aptures a 1500 bytes paket where:1. The IP header is 20 bytes, as we do not set up any option.2. The IP payload is 1460 bytes, where 32 bytes orrespond to the TCP headerand the remaining 1428 bytes to the data.As shown in Figure 6.3 the transformation proess from IPv4 to IPv6 inreases thesize of the paket 20 bytes. After the IP translation is performed, we also add theESP header to the paket, further inreasing the �nal paket length.The hange of the MTU value allowed us to reeive the total amount of data thatthe lient requested in a passive FTP onnetion where the lient was using HITsand the server LSIs.
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Figure 6.3: LSI-to HIT onversion and e�ets on MTU6.7 TUN/TAP mehanismInstead of using a virtual interfae dummy0, we ould use a TUN virtual tunneldevie where the outgoing LSI pakets an be redireted. The TUN devie makes



CHAPTER 6. ANALYSIS 52available the reeived pakets for the hipd through the /dev/net/tun devie. When anew paket is read from the virtual devie, the LSI an be translated to the HITs andafterwards transformed into an ESP paket. The advantage of this method is thatthe userspae loates the bu�er where the virtual devie queues the pakets, thusthe bu�er an be larger than in the kernel spae. Afterwards, we an ontinue usingraw sokets for paket reinjetion into the IP stak. TUN/TAP is also more portable.6.8 The referral problemCurrently, IP addresses are used in di�erent ways by di�erent appliations. Betweenthe possible ategorizations [7℄, we fous on the following:
• Callbaks. The appliation at the loalhost retrieves the IP address of the peerand the peer uses it to later ommuniate with the same loalhost.
• Referrals. In an appliation with more than two hosts, host B obtains the IPaddress of host A and passes that to host C. After that, host C uses this IPaddress to ommuniate with host A.The deployment of appliations arrying IP addresses in the data stream reatessome problems in NATted environments as well as with LSIs. Some examples ofthese appliations or protools are FTP or Simple Network Management Protool(SNMP) MIBs for on�guration [11℄. In the next subsetion, we onentrate on theFTP ase.6.8.1 FTP and ReferralsFile Transfer Protool (FTP) [51℄ is a network protool used for storing and re-trieving �les over TCP onnetions. FTP uses two separate TCP onnetions forommuniation, one for data and one for ontrol. The FTP server listens by defaulton port 21 for the ontrol hannel, whih transfers FTP requests and replies. Onthe other hand, the FTP server listens by default on port 20 for the data hannel,whih transports �les. There are two types of data transfers:1. Ative. The lient spei�es to the server the IP address and port number wherethe server should onnet bak. The server port is 20. The lient program sendsthe PORT ommand to the server speifying the IP address and port numberwhere it should onnet bak. If the lient host is using an IPv6-enabled FTP,the ommand is EPTR.2. Passive. The lient asks the server for the IP address and port number where itan onnet and reeive the data. The lient program sends the PASV ommand



CHAPTER 6. ANALYSIS 53to ask the server whih IP address and port it must onnet to. If the serverhost uses an IPv6-enabled FTP, the ommand is EPSV. This mode is usuallythe one used by default in web browsers.The FTP protool uses both modes inluding the address and port within the pro-tool, reating the allbak problem. In partiular, the FTP PORT ommand andthe PASV responses inlude the IP address in ASCII in the FTP ontrol paketpayload [23℄. We found in the LSI senario that the appliation treats the LSIs as IPaddresses, and as we have mentioned in this thesis, this identi�er has a loal sope,meaning initiator and responder an not have the same LSIs. Thus, the peer hostappliation has no system ontext to resolve the LSI bak to a HIT or an IP address.We studied referrals with FTP using hipl�userspae�2.6�path-1661 version. Table 6.3shows that when the appliation uses HITs on both sides, there is full support forboth FTP modes. We explain below the senario when the appliation uses LSIs onboth sides. Client Server Ative PassiveHIT HIT OK OKHIT LSI KO OKLSI HIT KO KOLSI LSI KO KOTable 6.3: Results obtained using lftp 3.6.1 on the lient side and proftpd 1.3.1 onthe server sideWe now show an example where HIP fails due to the referral problem. We want toset up a HIP-enabled FTP session between two hosts. The FTP server uses Proftpdversion 1.3.1 and the lient uses lftp version 3.6.1. We show an output example whenwe run the lient and try to list the diretories of the peer mahine.ftp -v 1.0.0.7Conneted to 1.0.0.7.220 ProFTPD 1.3.1 Server (ProFTPD Default Installation) [1.0.0.1℄Name (1.0.0.7:tfinez):331 Password required for tfinezPassword:230 User tfinez logged inRemote system type is UNIX.Using binary mode to transfer files.ftp> ls500 Illegal PORT ommandftp: bind: Address already in useftp> passive



CHAPTER 6. ANALYSIS 54Passive mode on.ftp> ls227 Entering Passive Mode (1,0,0,1,213,223).ftp: onnet: Connetion refusedAs we an see, we obtain a ontrol onnetion to the server beause the onne-tion establishment is done via TCP. This results in error 500 and we solve it usingpassive mode. Afterwards, when we retry the ls ommand, the server refuses theonnetion. As we an see, the server address is 1.0.0.1. This is the default LSIidenti�er value of the server, but in the lient ontext this LSI is its own LSI andnot the server one, as we show with the netstat output at the lient:Proto Rev-Q Send-Q Loal Address Foreign Address Statetp 0 0 1.0.0.1:46191 1.0.0.7:21 ESTABLISHEDThis is the netstat output at the server:Proto Rev-Q Send-Q Loal Address Foreign Address Statetp 0 0 1.0.0.1:21 1.0.0.5:46191 ESTABLISHEDAs we an observe, there is no relation between the LSIs. Therefore, when the LSIsare passed on the protool payload, we lose the ontrol to determine the soure anddestination addresses.It ould seem odd that the ase where HITs are used in the lient and LSIs in theserver works in passive mode. The explanation is that the server is responding withthe EPSV ommand where only the port is spei�ed and not the server address. Theative mode in this senario does not work beause the server does not support theIPv6 network protool, thus the lient reeives the error 522. The reason ould bebeause the server reeives the EPTR ommand with the HIT and it does not knowhow to manage the IPv6 address beause the server is bound to an IPv4 address.In addition, FTP an use referrals instead of allbaks. This feature also representsa problem, although referrals with FTP are rarely used. A possible solution is thathipfw an dynamially modify the ontents of the ontrol onnetion, rewriting theLSIs in the paket with the right LSI pair in the host. Otherwise, the user or admin-istrator an use a similar appliation, e.g. sftp. This appliation is the seure formof FTP. It is an FTP based on ssh. As the last option, the user or administrator anuse an IPv6 FTP server beause the HIT identi�er works properly with both modes.



CHAPTER 6. ANALYSIS 556.8.2 Solution for FTP using LSIsAs we pointed out, one solution is to modify the LSI ontained in the payload by theone that has a ontext in the loal mahine. We already explained that an inomingpaket is derypted and afterwards the paket ontaining the HITs is aptured by arule in hipfw. If the destination appliation is IPv6 there is no problem, otherwisewe need to verify when the appliation protool is FTP. In this ase, not only thehipfw must translate the IPv6 header to an IPv4 one, ontaining the LSIs, but alsothe hipfw must hek the payload in order to hange the LSI to the peer LSI valuerepresented loally aording to the orresponding ESP tunnel.6.9 LSI CompatibilityThe LSI module must be ompatible with the rest of the extensions that inlude theHIPL implementation. This setion fouses on the most interesting ompatibilityissues related with this master thesis: normal �rewall aess ontrol and userspaeIPSe.6.9.1 Normal Firewall Aess ControlThe LSI design is based on apturing and queuing pakets that ontain LSI addressesto hange this identi�er by its orrespondent HIT. The hipfw arries out this aptureproess with new rules de�ned with iptables. Basially, there is a rule for outgoingpakets speifying the LSI pattern and another rule for inoming pakets speify-ing the HIT pattern. The input rule that aptures HITs, is ompatible with hipfwaess ontrol beause the LSI module modi�es the paket only when the destina-tion appliation only supports IPv4. Otherwise, hipfw proesses the paket and thebehaviour is the same as before adding the LSI support. On the other hand, theoutput rule a�ets only LSI tra� beause as we already disussed, the LSI addressspae is unassigned by IANA. However, it ould ause some problems related withmisbehaving NATs.6.9.2 Userspae IPSeThe userspae IPSe extension was implemented almost simultaneously as the LSIextension. The userspae IPSe design relies on the same base as LSIs. Both im-plementations must be ompatible. Userspae IPSe relies on getting HIT-basedoutbound pakets as input and non-HIT inbound pakets as output. Figure 6.4shows the proessing of the outbound paket. As we an see, both extensions mod-ify and reinjet the paket again. It must be notied that, while the LSI extension



CHAPTER 6. ANALYSIS 56only modi�es the IP header, the IPSe extension is a bit more triky beause itenrypts the data and adds the ESP header using the BEET mode.
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iptables HIT ruleiptables LSI ruleFigure 6.4: Firewall outbound pakets shema inluding LSI and IPSe extensionsNext, we show in Figure 6.5 the input proessing. As we an see, now hipfw appliesthe userspae IPSe extension in the �rst plae in order to derypt the paket andto add the HITs into the IPv6 header. Furthermore, we must not forget that hipfwtranslates HITs to LSIs only if the destination appliation does not support IPv6.
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iptables HIT ruleiptables ESP ruleFigure 6.5: Firewall inbound paket shema for LSI and IPSe extensions6.10 Opportunisti ModeThis setion disusses the advantages and disadvantages between system-based andlibrary-based opportunisti modes. Then, we ompare the TESLA approah withthe opportunisti system library.One of the main disadvantages of the opportunisti library is the lak of systemall implementation. As a onsequene, HIPL supports appliations in this senariodepending on the system alls that the running appliation uses. Below we enumeratethe supported system alls in the library-based opportunisti mode:1. soket2. bind



CHAPTER 6. ANALYSIS 573. onnet4. send, sendto and sendmsg5. rev, revfrom and revmsg6. aept7. write and writev8. read and readv9. lose10. listen11. pollAlthough the most used system alls by appliations are wrapped, there are still otherimportant funtions missing, e.g. setsokopt, getsokname, getpeername, lone, dup,dup2, flose and selet from the urrent implementation. Aording to this approah,the user must trae the system alls [56℄ made by the appliation in order to �nd thenot supported ones. This objetive beomes more ompliated when the soure odeis not available. On the other hand, the system-based opportunisti mode solvesthis problem beause there is no intereption library. In this ase, it is the hipfw,whih aptures the pakets to trigger the opportunisti mehanism. The libraryfully supports the TCP protool, but the UDP [48℄ and ICMP protools are not yetsupported. As we an see, the system-based mode moves the binding from systemalls present in the library below the TCP layer.The seond problem that the user library model introdues is a on�it betweenother LD_PRELOADs. The point to solve is to deide whih library the applia-tion must proess �rst in ase we have another library whih is already modifyingthe same system all as the opportunisti library. Thus, we must take into aounthow to manage haining of the libraries in the LD_PRELOAD approah.With the user library from the TESLA we ould use the approah whih we in-trodued in hapter 2. TESLA and the library-based mode share the interpositionlibrary shema. But TESLA provides an upper layer of abstration beause the ser-vie operates in network �ows rather than sokets. However, TESLA is also basedon the LD_PRELOAD approah, adding the disadvantages that we desribed before.



Chapter 7ConlusionsIn this thesis, we foused on supporting legay IPv4 appliations in legay systems.Despite IPv6 being designed to replae IPv4 in the long term, the reality is that IPv4will live together with IPv6 during quite a long period. Another important onsid-eration is that there will always be IPv4-only legay appliations whose soure odeis not available or written in an arhai programming language. Modifying exist-ing appliations or rewriting new ones is expensive. By using LSIs provided by HIP,even legay appliations an use IPv6 without modifying them, and also bene�t fromother features provided by HIP.We designed and implemented LSI support to enable interoperability between IPv4and IPv6 appliations in HIP for Linux (HIPL), the implementation was seleted asthe referene HIP implementation.Apart from the design and implementation of LSIs, we onduted tests on the per-formane with di�erent HIP identi�er senarios and the two di�erent approahesto the opportunisti mode library. Di�erent tests have been arried out using thefollowing protools: TCP and ICMP. The LSI and system-based opportunisti modeare urrently less e�ient in our ode than the userspae library-based approah.The implementation does not yet have paket queues and threads whih explainsthe di�erene in performane. In addition, the LSI module realizes input/outputqueries per eah paket reeived, in order to deide whih IP version the destinationappliation supports, inreasing the proessing time of the paket. We also experi-ened a 3-seond delay per eah measurement during a TCP onnetion using LSIs.Furthermore, the library-based approah faes some pratial problems.We found some problems with referrals and allbaks. The problem is related to thede�nition of LSIs, whih are limited by its loal sope. We studied these senariosdeeply with FTP. We showed that the ommuniation with HITs at both sides worksas well as when the FTP lient appliation is IPv6 and the FTP server uses IPv458



CHAPTER 7. CONCLUSIONS 59in passive mode. During this study, we tried to transfer high quantities of data,realising that the MTU value used by default in HIP had to be hanged.In addition, we reviewed the ompatibility with userspae IPSe and the normal�rewall aess ontrol. As a result, we provided some guidelines for future work.We proposed to move the opportunisti library from the user to the system levelreusing the LSI design. The system level approah solves some urrent bugs in theopportunisti library, removes library dependeny problems and inreases the num-ber of appliations that HIP supports.In addition, we ompared our approahes with the TESLA approah. TESLA hasin ommon with the opportunisti user library that both of them use the interposi-tion library mehanism. TESLA provides a high-level abstration to session serviesand it allows to ompose a hain of servies. However, TESLA may have the sameinherent limitations as the user-based opportunisti library.To reap, the LSI-based and system-based opportunisti mode approah seem promis-ing ways to failitate HIP deployment and ease the transition towards IPv6-basednetworks.



Chapter 8Future WorkThe design and implementation e�orts have brought up some future researh anddevelopment ideas that we desribe in this hapter. Initially we disuss future workrelated with LSIs and afterwards that related with opportunisti mode. Finally wedisuss the future guidelines for integrating, in a ompatible way, the di�erent ex-tensions in the hipfw module.8.1 LSI Future WorkThis setion fouses on the related issues with this projet that need future work.8.1.1 Assign an Address SpaeOur proposal de�nes a �xed LSI pre�x, but there exist ative disussions on this topibeause IANA has not assigned the range 1.0.0.0/8 for LSIs. In the future, there maybe a need to reserve a name-spae for LSIs. This option is not very feasible at themoment beause HIP is not deployed widely yet. On the other hand, we an thinkthat the approah where the mapping between LSIs and HITs is done on higher lev-els of the TCP/IP stak is better. However, this option implies kernel modi�ationswhih require more e�ort and have to be aepted to the linux kernel. Therefore,we deided to implement the other approah that is more suitable for legay systems.8.1.2 Support DNS ResolutionDNS Proxy support for LSI was not implemented yet during the writing of this the-sis. When the appliation makes an AAAA request, the DNS Proxy module returnsa HIT as an AAAA response if there is a HIP RR. If the appliation makes an A60



CHAPTER 8. FUTURE WORK 61request and there is a HIP RR, the DNS Proxy module returns an LSI as an Aresponse. The alloated LSI an be reeived using the output of "hiponf get haall|HIT".8.1.3 Withdraw Pakets LossWe must provide a mehanism to queue the pakets until the hosts establish theBase Exhange. The urrent LSI implementation drops the pakets until the | es-tablishes the Base Exhange, reating an RTO. This approah is detrimental for theLSI performane. One approah an be to blok the initiator appliation after the�rst query until a positive answer is obtained from the Base Exhange. The loss ofpakets is not a problem for the TCP protool beause it will retransmit them again,but the same does not apply to UDP or ICMP.The reinjetion mehanism used with LSIs needs to be improved beause it addsextra time during the proessing of the paket. Namely, userspae IPSe, system-based opportunisti mode and LSI modules immediately reinjet the paket afterproessing it, whereas it would be more e�ient for all of them to modify the paketand only then to reinjet it. However, this did not work beause of interfamily trans-formations.8.1.4 Solve the Referral ProblemAppliations using referrals or allbaks with LSIs have to be supported in some way.For example, hipfw should implement referral onversion for FTP ontrol pakets,similarly to what NAT devies and Appliation Layer Gateways (ALGs) do today.As an alternative solution, the system-based opportunisti mode ould be used tohandle referral problems. This approah does not break the FTP RFCs and avoidsmodi�ations to FTP implementations.In addition, there are many appliations that atually have addresses to appliationlayer headers, although they do not neessarily use them. For example, IM protools,IMAP, POP, SIP or HTTP. If these protools have IPv6-based appliations, the useror administrator an use HITs.Unfortunately, the reality is that many IPv6-based appliations are still being runwithout IPv6 support. In this ase, we must realize whether the appliation is justlogging the IP addresses but not neessarily using them for anything. In this ase,the LSI module works although the appliation logs the wrong LSI values. The re-ferral problem brought up that more tests must be done with a wide variety of IPv4appliations to �nd out possible problemati senarios.
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8.1.5 Optimize the ImplementationThe HIP implementation of Erisson handles LSIs loser to the appliation, at thekernel soket handler whih may be a better option beause it solves urrent problemswhih need future work. Erisson's implementation solves referral and misbehavingNAT problems beause it translates the LSI to the HIT before arriving to the routingtables.In general, we must improve the LSI performane optimizing the implementation.Moreover, we must �nd a solution in order to derease the 3s onsumed by the sys-tem all onnet() in the TCP protool, beause the other identi�ers have a prettylow delay ompared to LSIs.8.1.6 Improve /pro aessCurrently hipfw implements a mehanism to deide if it must modify an inomingpaket with HITs by a paket ontaining LSIs or opportunisti IP addresses. Hipfwmanages this proess heking if the destination port is in the �le "/pro/net/tp6".The main disadvantage is that the daemon does this veri�ation per eah paket,running a synhronous input/output operation where the appliation bloks untilthe system all is omplete. The input/output system alls are the most time on-suming ones. Thus, this behaviour reates a bottlenek that we must solve in orderto improve the run-time performane.We would reommend to improve the /pro aess by broadasting the inomingpakets. The alternative onsists on broadasting eah inoming paket to HIT, LSIand opportunisti IP at the same time. TCP drops pakets with dupliate, i.e. outof order sequene. Assume an appliation able to listen both address families. Then,as TCP uses a sequene number to identify the order of the bytes sent from thelient, it proesses a �rst paket and inrements the expeted sequene number. Asthe other two pakets have a wrong sequene number, TCP disards them withoutgenerating any response.However, the results of the experimentation proof that there are some problems.Let's assume an appliation listening on port 1111. The hosts reeives an inomingpaket with LSIs. Then, hipfw broadasts an LSI and HIT-based pakets. TheLSI paket is delivered properly to the appliation, but as no appliation reeivesthe HIT-based paket, the TCP stak generates an RST paket and sends it to the



CHAPTER 8. FUTURE WORK 63initiator. In suh situation, the initiator aborts the TCP ommuniations.On the other hand, UDP is an unreliable transport protool, thus dupliate paketsould exist unless the appliation implements dupliate detetion.In onlusion, urrently HIPL heks if there is an IPv6 appliation but broadastit otherwise (to LSI and system opportunisti-based appliations). If we have anIPv6-based system opportunisti mode in the future, we may have to hange thisbehaviour.8.2 Integrate Di�erent ExtensionsThe omponent hipfw manages three extensions: opportunisti TCP, userspaeIPSe and LSI. The last two extensions follow the reinjetion shema explained inthis thesis. This proedure adds several disadvantages that we must take into a-ount in order to improve the integration of the extensions. First of all, the numberof times iptables proess a paket is the number of ative extensions plus one. Con-sequently, hipfw enqueues a paket in the output queue of iptables various times,inreasing the loading of the queue. Seondly, reinjeted pakets arrive at the outputqueue, whih makes it hard to distinguish amongst inbound and outbound paketmodi�ations.To avoid these problems, we ould take a new approah. This new proposal hangesthe reinjetion mehanism by reating a hain of handlers that implements all theneessary paket modi�ations before reinjeting the paket. We must be aware tokeep the orret order of extension proessing for handling input and output paketsto ensure ompatibility when more than one extension is in use.As userspae IPSe relies on reeiving HIT-based pakets, it must be the last ex-tension proessing outbound pakets. The LSI extension relies on reeiving LSIidenti�ers and therefore, it must be the �rst extension hipfw proesses in order toreate a HIT-based paket. On the other hand, userspae IPSe extension mustproess inbound pakets �rst beause it relies on getting non-HIP pakets as inputand then by the LSI extension beause it expets to reeive HIT-based pakets inorder to deide on the translation to an LSI-based paket. The senario desribedintegrating both extensions is shown in Figure 8.1.
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Figure 8.1: Firewall inbound and outbound pakets shema inluding the integrationof LSI and IPSe extensions, saving iptables queuing and unneessary reinjetions
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