Infrastructure Support for Host Identity Protocol

COST 290 meeting, Colmar

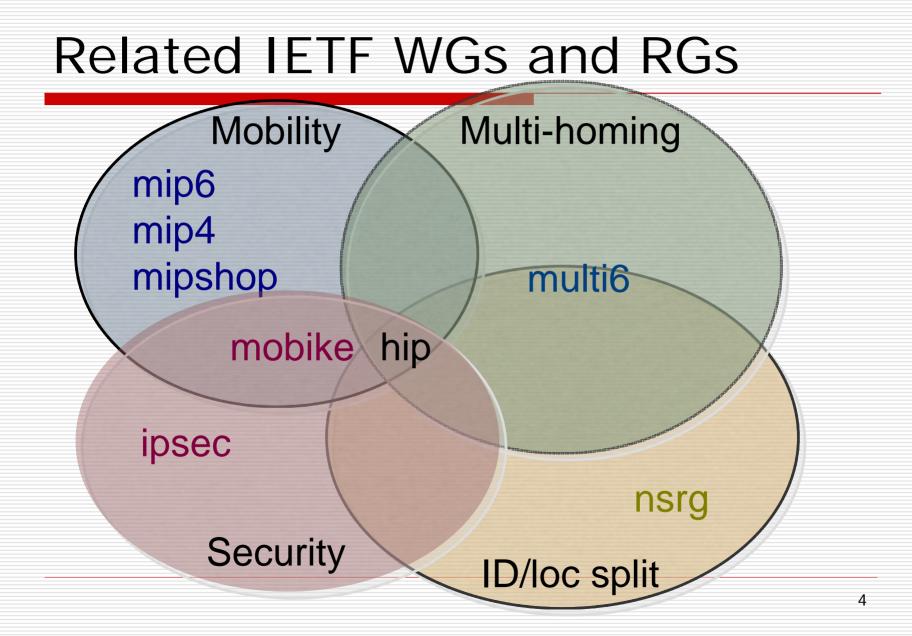
Andrei Gurtov Helsinki Institute for Information Technology

(HIP slides from Pekka Nikander, Ericsson Research Finland)

Architectural background

- □ IP addresses serve the dual role of being
- End-point Identifiers
- Names of network interfaces on hosts
- Locators
- □Names of naming topological locations

This duality makes many things hard

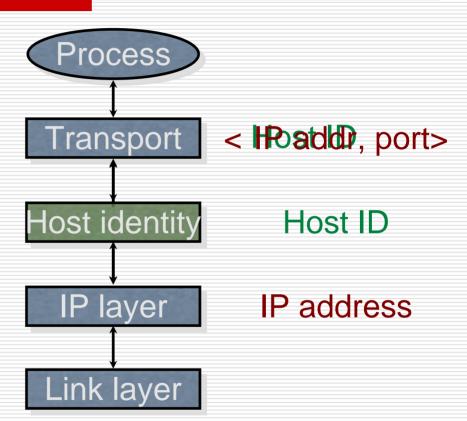

New requirements to Internet Addressing

□Mobile hosts

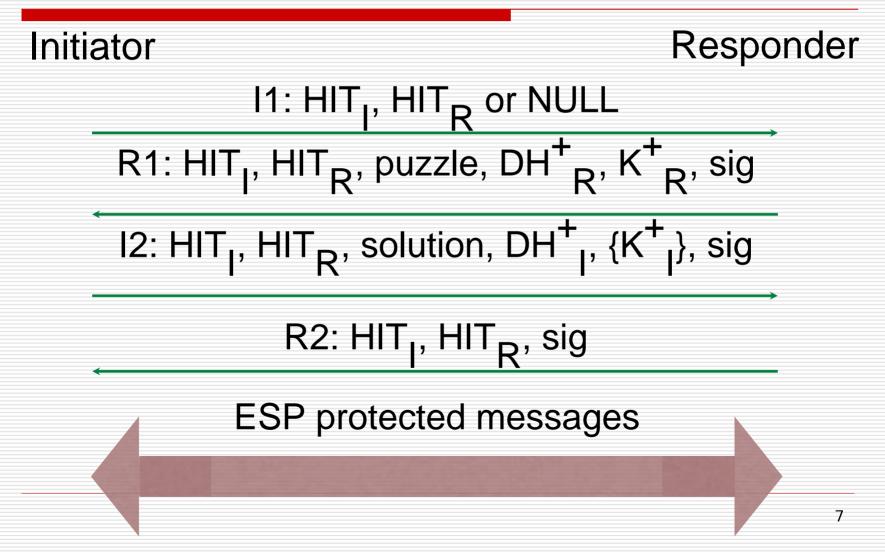
Need to change IP address dynamically

- Multi-interface hosts
- Have multiple independent addresses
- Mobile, multi-interface hosts most challenging
- Multiple, dynamically changing addresses
- □More complex environment

e.g. local-only connectivity



HIP in a Nutshell


- Architectural change to TCP/IP structure
- Integrates security, mobility, and multihoming
- Opportunistic host-to-host IPsec ESP
- End-host mobility, across IPv4 and IPv6
- End-host multi-address multi-homing, IPv4/v6
- IPv4 / v6 interoperability for apps
- □A new layer between IP and transport
- Introduces cryptographic Host Identifiers

The Idea

A new Name Space of Host Identifiers (HI)
Public crypto keys!
Presented as 128-bit long hash values, Host ID Tags (HIT)
Sockets bound to HIS, not to IP addresses
HIs translated to IP addresses in the kernel

Protocol overview

IETF standardization status

Draft	Curr. vers.	at IESG
ietf-hip-arch	-03	now
ietf-hip-base	-pre- 02	fall 2005?
ietf-hip-esp	-pre-00	fall 2005?
ietf-hip-registration	-pre-00	fall 2005?
ietf-hip-dns	-01?	fall 2005?
ietf-hip-rvs	-00	early 2006?
ietf-hip-mobility	-mm-02	early 2006?
ietf-hip-multihoming	-mm-02	late 2006?

Tekes Infrastructure for HIP Project

- Partners: HIIT, TKK, Nokia, Ericsson, Elisa, Finnish Defense Forces
 - 2,5 years, mid 2004-2007
- Project Goals
 - Study and develop the infrastructure support necessary for a wide deployment of HIP.
 - Provide scientific results and play a leading role in the standardization of HIP

People Involved

- Doc. Pekka Nikander, Prof. Martti Mäntylä (HIIT)
 Prof. Antti Ylä-Jäaski (TKK)
- Andrei Gurtov, PhD, project manager
- Teemu Koponen, MSc
- Miika Komu, MSc
- Mika Kousa, ~MSc
- Dmitry Korzun, PhD
- □ Wenpeng Zhou, MSc
- □ Janne Lindqvist, ~MSc
- Essi Vehmersalo
- Niklas Karlsson

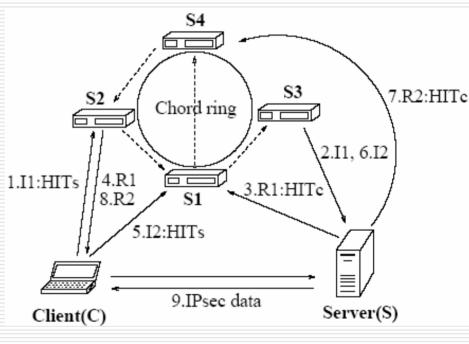
International Connections

- □ ICSI, Berkeley
 - Scott Shenker
- UC Berkeley
 - Ion Stoica, Anthony Joseph (at HIIT 8-11.2004)
- 🗖 M.I.T
 - Hari Balakrishnan
- Meetings so far
 - Collaboration meeting, Berkeley, 11/04
 - HIP Workshop, Washington, 11/04
 - OASIS retreat and i3 meeting, Tahoe, 1/05

InfraHIP Work Packages

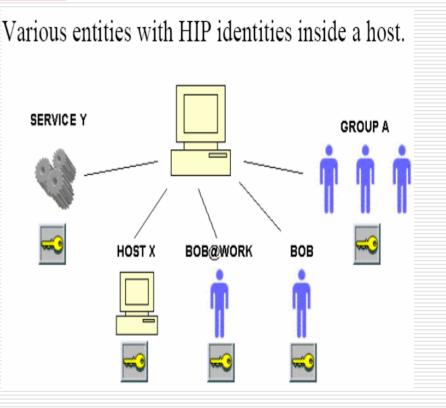
- 1. Next gen. Internet architecture
- 2. HIP on Linux
- 3. Rendezvous and naming
- 4. Multiple HIP identities
- **5.** Application migration
- 6. HIP applications
- 7. Corporate HIP

WP1. Architectural


- Explore the general effect of identifier/locator split on Internet
- Study alternative solutions to HIP
 - Internet Indirection Infrastructure
 - Multi6, Mobile IP, ...
- Produce a report on findings
 - Comparison criteria for existing alternatives to HIP
- Cooperate on integrating HIP as one component of the next-generation Internet architecture

WP2. HIP on Linux

- □ Finalize HIIT's HIP implementation in Linux kernel
- Release as open source, maintained, and easily usable software
- Integrate into official Linux kernel
- Performance evaluation of HIP exchange and mobility
- Regular interop testing with other implementations at IETF
- Demonstrations
- □ Further development of native HIP API
- Mobility extensions with multiple Security Associations (SAs)


WP3. Rendezvous & Naming

- Infrastructure for resolving Host Identities to IP addresses
 - DNS Extensions
 - Use of Distributed Hash Tables or i3 systems
 - Rendezvous servers
- Deploy an experimental infrastructure on a widescale testbed PlanetLab

WP4. Multiple Identities

- How to manage and store multiple host identifiers on a single operating system
 - Needed e.g. for privacy protection
- Major extensions to HIP API and implementation

WP5. Application Migration

- Study migration of a running HIP application between hosts
 - Maintaining communication transparency
 - Avoiding residual dependency
- Delegation-based approach
 - Destination re-establishes the associations with remote peers
 - Destination receives an authorization to use old HIT using a signed certificate
- Implementing a prototype using ZAP migration system from Columbia University

WP6. Applications for HIP

- Evaluate new possible applications enabled by HIP
- "Road warrior" = mobile VPN user
 - E.g. distributed file system with back-up
- Search in peer-to-peer systems
- Faster WLAN access control
- Device peering
- Ad-hoc networking

WP7. Corporate

- Study use of HIP in the corporate sector
- NAT/Firewall traversal
- □ Group communication
- Management of HIP hosts, MIBs
 - Make network renumbering easier
- VPN solutions

Summary

- □New cryptographic name space
- IP hosts identified with public keys
- □Integrates security, mobility, multi-homing
- □Initial ideas at the IETF in late 1999
- Base specifications start to be mature
- □Five interoperating implementations
- http://hipl.hiit.fi
- http://www.hip4inter.net
- http://www.tml.hut.fi/~pnr/publications/

InfraHIP develops extensions to naming and middleboxes necessary for widespread deployment of HIP